Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895006

RESUMO

Previously, we demonstrated that mitochondrial transplantation has beneficial effects in a polymicrobial sepsis model. However, the mechanism has not been fully investigated. Mitochondria have their own genes, and genomic changes in sepsis are an important issue in terms of pathophysiology, biomarkers, and therapeutic targets. To investigate the changes in transcriptomic features after mitochondrial transplantation in a polymicrobial sepsis model, we used a rat model of fecal slurry polymicrobial sepsis. Total RNA from splenocytes of sham-operated (SHAM, n = 10), sepsis-induced (SEPSIS, n = 7), and sepsis receiving mitochondrial transplantation (SEPSIS + MT, n = 8) samples was extracted and we conducted a comparative transcriptome-wide analysis between three groups. We also confirmed these results with qPCR. In terms of percentage of mitochondrial mapped reads, the SEPSIS + MT group had a significantly higher mapping ratio than the others. RT1-M2 and Cbln2 were identified as highly expressed in SEPSIS + MT compared with SEPSIS. Using SHAM expression levels as another control variable, we further identified six genes (Fxyd4, Apex2l1, Kctd4, 7SK, SNORD94, and SNORA53) that were highly expressed after sepsis induction and observed that their expression levels were attenuated by mitochondrial transplantation. Changes in transcriptomic features were identified after mitochondrial transplantation in sepsis. This might provide a hint for exploring the mechanism of mitochondrial transplantation in sepsis.


Assuntos
Sepse , Transcriptoma , Ratos , Animais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Perfilação da Expressão Gênica , Sepse/genética , Sepse/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373260

RESUMO

Previously, we have shown that mitochondrial transplantation in the sepsis model has immune modulatory effects. The mitochondrial function could have different characteristics dependent on cell types. Here, we investigated whether the effects of mitochondrial transplantation on the sepsis model could be different depending on the cell type, from which mitochondria were isolated. We isolated mitochondria from L6 muscle cells, clone 9 liver cells and mesenchymal stem cells (MSC). We tested the effects of mitochondrial transplantation using in vitro and in vivo sepsis models. We used the LPS stimulation of THP-1 cell, a monocyte cell line, as an in vitro model. First, we observed changes in mitochondrial function in the mitochondria-transplanted cells. Second, we compared the anti-inflammatory effects of mitochondrial transplantation. Third, we investigated the immune-enhancing effects using the endotoxin tolerance model. In the in vivo polymicrobial fecal slurry sepsis model, we examined the survival and biochemical effects of each type of mitochondrial transplantation. In the in vitro LPS model, mitochondrial transplantation with each cell type improved mitochondrial function, as measured by oxygen consumption. Among the three cell types, L6-mitochondrial transplantation significantly enhanced mitochondrial function. Mitochondrial transplantation with each cell type reduced hyper-inflammation in the acute phase of in vitro LPS model. It also enhanced immune function during the late immune suppression phase, as shown by endotoxin tolerance. These functions were not significantly different between the three cell types of origin for mitochondrial transplantation. However, only L6-mitochondrial transplantation significantly improved survival compared to the control in the polymicrobial intraabdominal sepsis model. The effects of mitochondria transplantation on both in vitro and in vivo sepsis models differed depending on the cell types of origin for mitochondria. L6-mitochondrial transplantation might be more beneficial in the sepsis model.


Assuntos
Lipopolissacarídeos , Sepse , Humanos , Lipopolissacarídeos/metabolismo , Mitocôndrias/metabolismo , Sepse/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo
3.
Small ; 18(17): e2105811, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474607

RESUMO

Electrospun polymeric piezoelectric fibers have a considerable potential for shape-adaptive mechanical energy harvesting and self-powered sensing in biomedical, wearable, and industrial applications. However, their unsatisfactory piezoelectric performance remains an issue to be overcome. While strategies for increasing the crystallinity of electroactive ß phases have thus far been the major focus in realizing enhanced piezoelectric performance, tailoring the fiber morphology can also be a promising alternative. Herein, a design strategy that combines the nonsolvent-induced phase separation of a polymer/solvent/water ternary system and electrospinning for fabricating piezoelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE) fibers with surface porosity under ambient humidity is presented. Notably, electrospun P(VDF-TrFE) fibers with higher surface porosity outperform their smooth-surfaced counterparts with a higher ß phase content in terms of output voltage and power generation. Theoretical and numerical studies also underpin the contribution of the structural porosity to the harvesting performance, which is attributable to local stress concentration and reduced dielectric constant due to the air in the pores. This porous fiber design can broaden the application prospects of shape-adaptive energy harvesting and self-powered sensing based on piezoelectric polymer fibers with enhanced voltage and power performance, as successfully demonstrated in this work by developing a communication system based on self-powered motion sensing.


Assuntos
Polímeros , Umidade
4.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743025

RESUMO

Immune suppression is known to occur during sepsis. Endotoxin tolerance is considered a mechanism of immune suppression in sepsis. However, the timing and serial changes in endotoxin tolerance have not been fully investigated. In this study, we investigated serial changes in endotoxin tolerance in a polymicrobial sepsis model. Herein, we used a rat model of fecal slurry polymicrobial sepsis. After induction of sepsis, endotoxin tolerance of peripheral blood mononuclear cells (PBMCs) and splenocytes was measured at various time points (6 h, 12 h, 24 h, 48 h, 72 h, 5 days, and 7 days), through the measurement of TNF-α production after stimulation with lipopolysaccharide (LPS) in an ex vivo model. At each time point, we checked for plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 levels. Moreover, we analyzed reactive oxygen species (ROS) as measured by 2',7'-dichlorodihydrofluorescein, plasma lactate, serum alanine aminotransferase (ALT), and creatinine levels. Nuclear factor (NF)-κB, IL-1 receptor-associated kinase (IRAK)-M, and cleaved caspase 3 levels were measured in the spleen. Endotoxin tolerance, measured by TNF-α production stimulated through LPS in PBMCs and splenocytes, was induced early in the sepsis model, starting from 6 h after sepsis. It reached a nadir at 24 to 48 h after sepsis, and then started to recover. Endotoxin tolerance was more prominent in the severe sepsis model. Plasma cytokines peaked at time points ranging from 6 to 12 h after sepsis. ROS levels peaked at 12 h and then decreased. Lactate, ALT, and serum creatinine levels increased up to 24 to 48 h, and then decreased. Phosphorylated p65 and IRAK-M levels of spleen increased up to 12 to 24 h and then decreased. Apoptosis was prominent 48 h after sepsis, and then recovered. In the rat model of polymicrobial sepsis, endotoxin tolerance occurred earlier and started to recover from 24 to 48 h after sepsis.


Assuntos
Lipopolissacarídeos , Sepse , Animais , Tolerância à Endotoxina , Interleucina-6 , Lactatos , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , NF-kappa B , Ratos , Espécies Reativas de Oxigênio , Sepse/patologia , Fator de Necrose Tumoral alfa
5.
J Food Sci Technol ; 58(10): 3972-3980, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34471321

RESUMO

Colour is one of the important quality traits affecting the meat purchasing decision by consumers, and myoglobin is the principal heme protein responsible for the meat colour. This study aimed to investigate the effects of pH (5.3, 5.8, 6.4 and 7.4) and temperature (4 and 25 °C) on oxymyoglobin (OxyMb) oxidation in model reaction mixtures containing OxyMb, fatty acids (C18:2n-6 and C18:3n-3) and vitamin E. A decrease of the OxyMb concentration with increased acidity was observed for all the reaction mixtures with/without fatty acids and vitamin E. After 48 h of storage at 4 °C, the OxyMb concentration decreased by approximately 60-70%, 61-69%, 53.7-53.9% and 40.93-41.84% in the reaction mixtures containing [OxyMb + C18:2n-6 or C18:3n-3] at pH 5.3, 5.8, 6.4 and 7.4, respectively. While, after 48 h at 25 °C, the OxyMb concentration decreased by 95-98% in all the reaction mixtures containing [OxyMb + C18:2n-6 or C18:3n-3] under all the pH conditions. The presence of vitamin E significantly inhibited the OxyMb oxidation in the reaction mixtures containing fatty acids under acidic conditions, but a higher level of vitamin E may be required for meat(s) containing high n-3 fatty acids content that are stored at high temperature.

6.
Soft Matter ; 16(11): 2695-2705, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32057062

RESUMO

Liquid crystal elastomers (LCEs) are a unique class of active materials with the largest known reversible shape transformation in the solid state. The shape change of LCEs is directed by programming their molecular orientation, and therefore, several strategies to control LC alignment have been developed. Although mechanical alignment coupled with a two-step crosslinking is commonly adopted for uniaxially-aligned monodomain LCE synthesis, the fabrication of 3D-shaped LCEs at the macro- and microscale has been rarely accomplished. Here, we report a facile processing method for fabricating 2D and 3D-shaped LCEs at the macro- and microscales at room temperature by mechanically programming (i.e., stretching, pressing, embossing and UV-imprinting) the polydomain LCE, and subsequent photocrosslinking. The programmed LCEs exhibited a reversible shape change when exposed to thermal and chemical stimuli. Besides the programmed shape changes, the actuation strain can also be preprogrammed by adjusting the extent of elongation of a polydomain LCE. Furthermore, the LCE micropillar arrays prepared by UV-imprinting displayed a substantial change in pillar height in a reversible manner during thermal actuation. Our convenient method for fabricating reversible 2D and 3D-shaped LCEs from commercially available materials may expedite the potential applications of LCEs in actuators, soft robots, smart coatings, tunable optics and medicine.

7.
Asian-Australas J Anim Sci ; 33(4): 640-650, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31480159

RESUMO

OBJECTIVE: Although the slaughter of cull sows (CS) for human consumption and meat products processing appears quite common throughout the world, relatively limited scientific information regarding the meat quality parameters of this pork type is available. The present study aimed at providing the technological quality characteristics and eating quality of CS meat, and comparing with those of commercial pork. METHODS: Longissimus thoracis et lumborum muscle samples of CS and finisher pigs (FP) at 24 h postmortem were collected and used for investigation of the meat quality traits (pH, color, shear force, cooking loss, water holding capacity), fatty acids, flavor compounds and sensory characteristics. RESULTS: The CS meat had significantly higher moisture content (p = 0.0312) and water holding capacity (p = 0.0213) together with lower cooking loss (p = 0.0366) compared to the FP meat. The CS meat also exhibited higher (p = 0.0409) contents of unsaturated fatty acids, especially polyunsaturated fatty acids (PUFA, p = 0.0213) and more desirable PUFA/total saturated fatty acids ratio (p = 0.0438) compared to the FP meat. A total of 56 flavor compounds were identified, amongst the amount of 16 compounds differed significantly between the two pork groups. Most of the PUFA-derived flavor compounds (e.g., hexanal, benzaldehyde, and hydrocarbons) showed higher amounts in the CS meat. While, 3-(methylthio)-propanal and 4-methylthiazole associated with pleasant aromas (meaty and roast odor notes) were only found in the FP meat. Furthermore, no differences were reported by panelists for flavor, juiciness, tenderness, and acceptability scores between the two pork groups studied. CONCLUSION: The sow meat exhibited better technological quality and its eating quality could be comparable to the commercial pork. This study provides meat processors and traders with valuably scientific information which may help to improve the utilization and consumption level of sow meat.

8.
Opt Express ; 27(24): 35981-35992, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878762

RESUMO

In this investigation, we propose a technique to obtain not only the dimensional surface profile but also tilt information of the rough dielectric surface having a few microns root-mean-square roughness. This technique is based on low coherence scanning interferometry (LCSI) using a compound light source by combining a superluminescent light-emitting diode with ytterbium-doped fiber amplifier. Tilt angle and direction of the measured surface is extracted by the principal component analysis (PCA) from the measurement surface data and the centroid peak detection algorithm. To verify the performance of the proposed tilt measurement method, standard angle gauge block and certified step height sample were used as specimens. LCSI tilt measurement was about 3 times superior to the conventional auto-collimator in terms of the measurement precision in the practical camera module manufacturing process of smartphones. The proposed method was also discussed the dynamic tilt evaluation for the moving object.

9.
Asian-Australas J Anim Sci ; 32(9): 1448-1457, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31010986

RESUMO

Objective: The present work aimed at evaluating the effects of carcass quality grade on the quality characteristics of pork meat according to Korean carcass quality grade system. Method: Pork carcasses with varying in quality grades (QG): 1+ (QG1+, n=10), 1 (QG1, n=10) and 2 (QG2, n=10), were used to evaluate the relationship between carcass quality grade and meat quality. The meat quality traits, fatty acid profiles, flavor compounds and sensory qualities were measured on the longissimus dorsi muscle samples of these carcasses. Results: Pork meat of higher quality grade (GQ1+) presented significantly higher fat content (5.43%), C18:2n-6 level (19.03%) and total unsaturated fatty acids (UFA) content (62.72%). Also, the QG1+ meat was significantly higher in levels of classes of flavor compounds such as aldehydes, alcohols and hydrocarbons in comparison to those of the meat samples from the lower GQ groups. The sensory evaluation results (flavor, juiciness, tenderness and acceptability scores) of QG1+ meat was significantly higher than the QG1 and QG2 meats. The pork with lower QG (i.e., QG2) was found positively correlated to redness (r=0.987), C18:1n-9 level (r=1.000) but negatively correlated to the fat content (r=-0.949), and flavor (r=-0.870), juiciness (r=-0.861), tenderness (r=-0.862) and acceptability (r=-0.815) scores. Conclusion: The pork with higher quality grade had higher fat content, total unsaturated fatty acids and better eating quality, thus producing pork with higher quality grades should be considered in order to satisfy the consumer's expectation.

10.
Rep Prog Phys ; 81(3): 036502, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368693

RESUMO

For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.

11.
Nanotechnology ; 29(27): 275709, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29658891

RESUMO

The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

12.
Opt Express ; 25(2): 1106-1113, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28157995

RESUMO

We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 µm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 µm rms roughness are discussed to validate the proposed interferometer system.

13.
Nanotechnology ; 28(14): 145706, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28287075

RESUMO

We explored the transfer of a single-layered graphene membrane assisted by substrate adhesion. A relatively larger adhesion force was measured on the SiO2 substrate compared with its van der Waals contribution, which is expected to result from the additional contribution of the chemical bonding force. Density functional theory calculations verified that the strong adhesion force was indeed accompanied by chemical bonding. The transfer of single-layered graphene and subsequent deposition of the dielectric layer were best performed on the SiO2 substrate exhibiting a larger adhesion force. This study suggests the selection and/or modification of the underlying substrate for proper transfer of graphene as well as other 2D materials similar to graphene.

14.
Nano Lett ; 16(1): 188-93, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26713902

RESUMO

We demonstrate a room temperature semiconductor-metal transition in thin film MoTe2 engineered by strain. Reduction of the 2H-1T' phase transition temperature of MoTe2 to room temperature was realized by introducing a tensile strain of 0.2%. The observed first-order SM transition improved conductance ∼10 000 times and was made possible by an unusually large temperature-stress coefficient, which results from a large volume change and small latent heat. The demonstrated strain-modulation of the phase transition temperature is expected to be compatible with other TMDs enabling the 2D electronics utilizing polymorphism of TMDs along with the established materials.

15.
Nanotechnology ; 27(50): 505703, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27861168

RESUMO

Scanning probe microscopy (SPM)-based approaches have been extensively studied as methods to control the structure and properties of materials on the nanoscale. In many cases, the SPM probe is physically utilized to control structure and properties. In addition to physical modulation, it has been reported that voltage can be effectively used to modulate electrochemical phenomena on the sample surface. These studies suggest that electrochemical modulation of the structure and properties is possible by applying a voltage. Herein, in order to demonstrate voltage induced modulation of surface structure, we explored surface nanosculpting by creating electrochemically induced pits on the surface of TiO2 thin films through the application of voltage using the atomic force microscope tip. Using a unipolar negative voltage sweep, pits were successfully generated. Further, the electric potential distribution was simulated to unravel the relationship between the pit volume and the magnitude of the applied voltage. Finally, surface protrusion induced by positive voltage sweep was also observed to elucidate the complete process of electrochemically induced surface modulation. These results can offer fundamental information for understanding how surface structure can be modulated by electrochemical phenomena.

16.
Nano Lett ; 14(8): 4413-7, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25002075

RESUMO

Both enhancing the excitons' lifetime and ingeniously controlling the spatial charge transfer are the key to the realization of efficiently photocatalytic and artificially photosynthetic devices. Nanostructured metal/metal-oxide interfaces often exhibit improved energy conversion efficiency. Understanding the surface potential changes of nano-objects under light illumination is crucial in photoelectrochemical cells. Under ultraviolet (UV) illumination, here, we directly observed the charge separation phenomena at the Au-nanoparticle/TiO2-nanotube interfaces by using Kelvin probe force microscopy. The surface potential maps of TiO2 nanotubes with and without Au nanoparticles were compared on the effect of different substrates. We observed that in a steady state, approximately 0.3 electron per Au particle of about 4 nm in diameter is effectively charged and consequently screens the surface potential of the underlying TiO2 nanotubes. Our observations should help design improved photoelectrochemical devices for energy conversion applications.

17.
Nanotechnology ; 25(35): 355703, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25116337

RESUMO

We have demonstrated that domain switching in ferroelectric copolymer films can be significantly affected by humidity. With increasing relative humidity (RH), we observed larger domains with highly irregular boundaries as a result of lateral spreading of the tip-induced electric field that originates from water adsorption. Fractal dimension study of irregular domains reveals that the fractal dimension is higher in cases where the RH is higher. The results show that the RH is one of the major switching parameters in ferroelectric copolymers, and therefore could allow clear understanding with regard to domain switching behavior in the ferroelectric copolymer films under ambient conditions.

18.
Nanotechnology ; 25(47): 475302, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25380080

RESUMO

We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ∼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.

19.
Nature ; 453(7196): 757-60, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18528390

RESUMO

High-harmonic generation by focusing a femtosecond laser onto a gas is a well-known method of producing coherent extreme-ultraviolet (EUV) light. This nonlinear conversion process requires high pulse intensities, greater than 10(13) W cm(-2), which are not directly attainable using only the output power of a femtosecond oscillator. Chirped-pulse amplification enables the pulse intensity to exceed this threshold by incorporating several regenerative and/or multi-pass amplifier cavities in tandem. Intracavity pulse amplification (designed not to reduce the pulse repetition rate) also requires a long cavity. Here we demonstrate a method of high-harmonic generation that requires no extra cavities. This is achieved by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate. In our experiment, the output beam emitted from a modest femtosecond oscillator (100-kW peak power, 1.3-nJ pulse energy and 10-fs pulse duration) is directly focused onto the nanostructure with a pulse intensity of only 10(11) W cm(-2). The enhancement factor exceeds 20 dB, which is sufficient to produce EUV wavelengths down to 47 nm by injection with an argon gas jet. The method could form the basis for constructing laptop-sized EUV light sources for advanced lithography and high-resolution imaging applications.

20.
Nano Lett ; 13(8): 3455-62, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23865960

RESUMO

A scanning probe microscopy technique for probing local ionic dynamics in electrochemically active materials based on the first-order reversal curve current-voltage (FORC-IV) method is presented. FORC-IV imaging mode is applied to a Ca-substituted bismuth ferrite (Ca-BFO) system to separate the electronic and ionic phenomena in this material and visualize the spatial variability of these behaviors. The variable-temperature measurements further demonstrate the interplay between the thermally and electric-field-driven resistance changes in Ca-BFO. The FORC-IV is shown to be a simple, powerful, and flexible method for studying electrochemical activity of materials at the nanoscale and, in conjunction with the electrochemical strain microscopy, it can be used for differentiating ferroelectric and ionic behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA