Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 145(22): 12264-12274, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220278

RESUMO

Recent studies on plasmon-assisted chemical reactions postulate that the hot electrons of plasmon-excited nanostructures may induce a non-thermal vibrational activation of metal-bound reactants. However, the postulate has not been fully validated at the level of molecular quantum states. We directly and quantitatively prove that such activation occurs on plasmon-excited nanostructures: The anti-Stokes Raman spectra of reactants undergoing a plasmon-assisted reaction reveal that a particular vibrational mode of the reactant is selectively excited, such that the reactants possess >10 times more energy in the mode than is expected from the fully thermalized molecules at the given local temperature. Furthermore, a significant portion (∼20%) of the excited reactant is in vibrational overtone states with energies exceeding 0.5 eV. Such mode-selective multi-quantum excitation could be fully modeled by the resonant electron-molecule scattering theory. Such observations suggest that the vibrationally hot reactants are created by non-thermal hot electrons, not by thermally heated electrons or phonons of metals. The result validates the mechanism of plasmon-assisted chemical reactions and further offers a new method to explore the vibrational reaction control on metal surfaces.

2.
J Chem Phys ; 156(16): 160902, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490022

RESUMO

The demand to visualize the spatial distribution of chemical species based on vibrational spectra is rapidly increasing. Driven by such a need, various Raman and infrared spectro-microscopies with a nanometric spatial resolution have been developed over the last two decades. Despite rapid progress, a large gap still exists between the general needs and what these techniques can achieve. This Perspective highlights the key challenges and recent breakthroughs of the two vibrational nano-imaging techniques, scattering-type scanning near-field optical microscopy and tip-enhanced Raman scattering.

3.
Plant Cell Physiol ; 62(4): 708-720, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33594435

RESUMO

The gaseous phytohormone ethylene plays vital roles in diverse developmental and environmental adaptation processes, such as fruit ripening, seedling establishment, mechanical stress tolerance and submergence escape. It is also known that in the light, ethylene promotes hypocotyl growth by stimulating the expression of PHYTOCHROME INTERACTING FACTOR3 (PIF3) transcription factor, which triggers microtubule reorganization during hypocotyl cell elongation. In particular, ethylene has been implicated in plant responses to warm temperatures in recent years. However, it is currently unclear how ethylene signals are functionally associated with hypocotyl thermomorphogenesis at the molecular level. Here, we show that ETHYLENE-INSENSITIVE3 (EIN3)-mediated ethylene signals attenuate hypocotyl thermomorphogenesis by suppressing auxin response. At warm temperatures, when the activity of the PIF4 thermomorphogenesis promoter is prominently high, the ethylene-activated EIN3 transcription factor directly induces the transcription of ARABIDOPSIS PP2C CLADE D7 (APD7) gene encoding a protein phosphatase that inactivates the plasma membrane (PM) H+-ATPase proton pumps. In conjunction with the promotive role of the PM H+-ATPases in hypocotyl cell elongation, our observations strongly support that the EIN3-directed induction of APD7 gene is linked with the suppression of auxin-induced cell expansion, leading to the reduction in thermomorphogenic hypocotyl growth. Our data demonstrate that APD7 acts as a molecular hub that integrates ethylene and auxin signals into hypocotyl thermomorphogenesis. We propose that the ethylene-auxin signaling crosstalks via the EIN3-APD7 module facilitate the fine-tuning of hypocotyl thermomorphogenesis under natural environments, which often fluctuate in a complex manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Hipocótilo/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Temperatura , Fatores de Transcrição/genética
4.
Acc Chem Res ; 52(11): 3008-3017, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31609583

RESUMO

The initial observations of surface-enhanced Raman scattering (SERS) from individual molecules (single-molecule SERS, SMSERS) have triggered ever more detailed mechanistic studies on the SERS process. The studies not only reveal the existence of extremely enhanced and confined fields at the gaps of Ag or Au nanoparticles but also reveal that the spatial, spectral, and temporal behaviors of the SMSERS signal critically depend on many factors, including plasmon resonances of nanostructures, diffusion (lateral and orientational) of molecules, molecular electronic resonances, and metal-molecule charge transfers. SMSERS spectra, with their molecular vibrational fingerprints, should in principle provide molecule-specific information on individual molecules in a way that any other existing single-molecule detection method (such as the ones based on fluorescence, mechanical forces, or electrical currents) cannot. Therefore, by following the spectro-temporal evolution of SMSERS signals of reacting molecules, one should be able to follow chemical reaction events of individual molecules without any additional labels. Despite such potential, however, real applications of SMSERS for single-molecule chemistry and analytical chemistry are scarce. In this Account, we discuss whether and how we can use SMSERS to monitor single-molecule chemical kinetics. The central problem lies in the experimental challenges of separately characterizing and controlling various sources of fluctuations and spatial variations in such a way that we can extract only the chemically relevant information from time-varying SMSERS signals. This Account is organized as follows. First, we outline the standard theory of SMSERS, providing an essential guide for identifying sources of spatial heterogeneity and temporal fluctuations in SMSERS signals. Second, we show how single-molecule reaction events of surface-immobilized reactants manifest themselves in experimental SMSERS trajectories. Comparison of the reactive SMSERS data (magnitudes and frequencies of discrete transitions) and the predictions of SMSERS models also allow us to assess how faithfully the SMSERS models represent reality. Third, we show how SMSERS spectral features can be used to discover new reaction intermediates and to interrogate metal-molecule electronic interactions. Finally, we propose possible improvements in experimental design (including nanogap structures and molecular systems) to make SMSERS applicable to a broader range of chemical reactions occurring under ambient conditions. The specific examples discussed in this Account are centered around the single-molecule photochemistry of 4-nitrobenzenethiol on metals, but the conclusions drawn from each example are generally applicable to any reaction system involving small organic molecules.

5.
Nano Lett ; 18(1): 262-271, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29206468

RESUMO

The existence of sub-nanometer plasmonic hot-spots and their relevance in spectroscopy and microscopy applications remain elusive despite a few recent theoretical and experimental evidence supporting this possibility. In this Letter, we present new spectroscopic evidence suggesting that Angstrom-sized hot-spots exist on the surfaces of plasmon-excited nanostructures. Surface-enhanced Raman scattering (SERS) spectra of 4,4'-biphenyl dithiols placed in metallic junctions show simultaneously blinking Stokes and anti-Stokes spectra, some of which exhibit only one prominent vibrational peak. The activated vibrational modes were found to vary widely between junction sites. Such site-specific, single-peak spectra could be successfully modeled using single-molecule SERS induced by a hot-spot with a diameter no larger than 3.5 Å, located at the specific molecular sites. Furthermore, the model, which assumes the stochastic creation of hot-spots on locally flat metallic surfaces, consistently reproduces the intensity distributions and occurrence statistics of the blinking SERS peaks, further confirming that the sources of the hot-spots are located on the metallic surfaces. This result not only provides compelling evidence for the existence of Angstrom-sized hot-spots but also opens up the new possibilities for the vibrational and electronic control of single-molecule photochemistry and real-space visualization of molecular vibration modes.

6.
J Phys Chem A ; 122(11): 2871-2876, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502413

RESUMO

The orientation state of hydrogen chloride (HCl) molecules in a solid argon matrix was reversibly controlled by applying an external electric field of up to 4 × 108 V·m-1 using the ice film capacitor method. The rovibrational transitions of the field-oriented HCl were measured by reflection absorption infrared spectroscopy with p-polarized light. Upon application of the external field, free rotation of HCl inside the matrix gradually changed to perturbed rotation and then to a pendular state harmonically bound in the Stark potential well. Further increase in the field strength increased the degree of dipole alignment along the field direction, approaching an asymptotically perfect orientation of the molecules with an average tilt angle of <30° at a field strength above 1 × 108 V·m-1.

7.
J Chem Phys ; 159(7)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37584952
8.
J Am Chem Soc ; 138(13): 4673-84, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26964567

RESUMO

The study of heterogeneous catalytic reactions remains a major challenge because it involves a complex network of reaction steps with various intermediates. If the vibrational spectra of individual molecules could be monitored in real time, one could characterize the structures of the intermediates and the time scales of reaction steps without ensemble averaging. Surface-enhanced Raman scattering (SERS) spectroscopy does provide vibrational spectra with single-molecule sensitivity, but typical single-molecule SERS signals exhibit spatial heterogeneities and temporal fluctuations, making them difficult to be used in single-molecule kinetics studies. Here we show that SERS can monitor the single-molecule catalytic reactions in real time. The surface-immobilized reactants placed at the junctions of well-defined nanoparticle-thin film structures produce time-resolved SERS spectra with discrete, step-transitions of photoproducts. We interpret that such SERS-steps correspond to the reaction events of individual molecules occurring at the SERS hotspot. The analyses of the yield, dynamics, and the magnitude of such SERS steps, along with the associated spectral characteristics, fully support our claim. In addition, a model that is based on plasmonic field enhancement and surface photochemistry reproduces the key features of experimental observation. Overall, the result demonstrates that it is possible, under well-controlled conditions, to differentiate the chemical and physical processes contributing to the single-molecule SERS signals, and thus shows the use of single-molecule SERS as a tool for studying the metal-catalyzed organic reactions.

9.
Nature ; 458(7236): 310-3, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19295604

RESUMO

Optical activity is the result of chiral molecules interacting differently with left versus right circularly polarized light. Because of this intrinsic link to molecular structure, the determination of optical activity through circular dichroism (CD) spectroscopy has long served as a routine method for obtaining structural information about chemical and biological systems in condensed phases. A recent development is time-resolved CD spectroscopy, which can in principle map the structural changes associated with biomolecular function and thus lead to mechanistic insights into fundamental biological processes. But implementing time-resolved CD measurements is experimentally challenging because CD is a notoriously weak effect (a factor of 10(-4)-10(-6) smaller than absorption). In fact, this problem has so far prevented time-resolved vibrational CD experiments. Here we show that vibrational CD spectroscopy with femtosecond time resolution can be realized when using heterodyned spectral interferometry to detect the phase and amplitude of the infrared optical activity free-induction-decay field in time (much like in a pulsed NMR experiment). We show that we can detect extremely weak signals in the presence of large achiral background contributions, by simultaneously measuring with a femtosecond laser pulse the vibrational CD and optical rotatory dispersion spectra of dissolved chiral limonene molecules. We have so far only targeted molecules in equilibrium, but it would be straightforward to extend the method for the observation of ultrafast structural changes such as those occurring during protein folding or asymmetric chemical reactions. That is, we should now be in a position to produce 'molecular motion pictures' of fundamental molecular processes from a chiral perspective.


Assuntos
Dicroísmo Circular/métodos , Cicloexenos/química , Terpenos/química , Vibração , Anisotropia , Limoneno , Estereoisomerismo , Fatores de Tempo
10.
Chem Sci ; 15(7): 2578-2585, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362436

RESUMO

Copper (Cu) is a widely used catalyst for the nitrate reduction reaction (NO3RR), but its susceptibility to surface oxidation and complex electrochemical conditions hinders the identification of active sites. Here, we employed electropolished metallic Cu with a predominant (100) surface and compared it to native oxide-covered Cu. The electropolished Cu surface rapidly oxidized after exposure to either air or electrolyte solutions. However, this oxide was reduced below 0.1 V vs. RHE, thus returning to the metallic Cu before NO3RR. It was distinguished from the native oxide on Cu, which remained during NO3RR. Fast NO3- and NO reduction on the metallic Cu delivered 91.5 ± 3.7% faradaic efficiency for NH3 at -0.4 V vs. RHE. In contrast, the native oxide on Cu formed undesired products and low NH3 yield. Operando shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) analysis revealed the adsorbed NO3-, NO2, and NO species on the electropolished Cu as the intermediates of NH3. Low overpotential NO3- and NO adsorptions and favorable NO reduction are key to increased NH3 productivity over Cu samples, which was consistent with the DFT calculation on Cu(100).

11.
Chemistry ; 19(44): 14958-62, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24038434

RESUMO

Heterogeneous catalysts play an important role in surface catalytic reactions, but selective bond breaking and control of reaction products in catalytic processes remain significant challenges. High-vacuum tip-enhanced Raman spectroscopy (HV-TERS) is one of the best candidates to realize surface catalytic reactions. Herein, HV-TERS was employed in a new method to control dissociation by using hot electrons, generated from plasmon decay, as plasmonic scissors. In this method, the N=N bond in 4,4'-dimercaptoazobenzene was selectively dissociated by plasmonic scissors, and the reaction products formed from the radical fragment (SC6H5N) were controlled by varying the pH value. Under acidic conditions, p-aminothiophenol was produced from the radical fragment by attachment of hydrogen ions, whereas under alkaline conditions, 4-nitrobenzenethiol was obtained by attachment of oxygen ions to the substrate.

12.
Phys Chem Chem Phys ; 15(12): 4190-4, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23247539

RESUMO

We investigated the localized surface plasmon resonances of individual AgAuAg nanorods (NRs) using the dark-field spectro-microscopy technique. We find that the scattering spectra of such hetero-NRs show longitudinal resonance wavelengths that are nearly insensitive to the relative composition of Ag and Au. Instead, the resonance is mostly governed by the overall length of the nanorod. This shows that the plasmons oscillate along the entire length of the NR without the significant perturbation at the Ag-Au interfaces. The results demonstrate that the overall geometry as well as the composition determine the tunability of the hetero-metallic nanostructures, and provide an important design rule for the composition-tunable bimetallic plasmon structures.

13.
J Phys Chem Lett ; 14(36): 8157-8164, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669560

RESUMO

We employed infrared scattering-type scanning near-field optical microscopy (IR-sSNOM) to study surface plasmon polaritons (SPPs) in trilayer graphene (TLG). Our study reveals systematic differences in near-field IR spectra and SPP wavelengths between Bernal (ABA) and rhombohedral (ABC) TLG domains on SiO2, which can be explained by stacking-dependent intraband conductivities. We also observed that the SPP reflection profiles at ABA-ABC boundaries could be mostly accounted for by an idealized domain boundary defined by the conductivity discontinuity. However, we identified distinct shapes in the SPP profiles at the edges of the ABA and ABC TLG, which cannot be solely attributed to idealized edges with stacking-dependent conductivities. Instead, this can be explained by the presence of various edge structures with local conductivities differing from those of bulk TLGs. Our findings unveil a new structural element that can control SPP, and provide insights into the structures and electronic states of the edges of few-layer graphene.

14.
Opt Express ; 20(8): 8689-99, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513579

RESUMO

We report that a pyramid-shaped scanning probe microscopy tip has non-zero polarizability along the in-plane direction (perpendicular to the tip axis, z) at visible frequency. The in-plane polarizability enables the scattering-type scanning near-field optical microscopy (s-SNOM) to measure the in-plane field component around a plasmon-resonant nanoparticle. Because of the non-zero in-plane polarizability, the cross-polarized s-SNOM images may contain contributions from the in-plane field component of an out-of-plane plasmon mode as well as the out-of-plane field component of an in-plane mode. By comparing a scattering model and experimental s-SNOM images, we estimate the polarization anisotropies of pyramid-shaped Si-tips and metal-coated Si-tips.

15.
Phys Chem Chem Phys ; 14(2): 840-8, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22124335

RESUMO

The role of ring torsion in the enhancement of intramolecular vibrational energy redistribution (IVR) in aromatic molecules was investigated by conducting excitation and dispersed fluorescence spectroscopy of 1,1'-binaphthyl (1,1'-BN) and 2,2'-BN. The dispersed fluorescence spectra of 1,1'-BN in the origin region of S(1)-S(0) were well resolved, which presented 25-27 cm(-1) gaps of torsional mode in the ground state. The overall profile of the dispersed spectra of 1,1'-BN is similar to that of naphthalene. In contrast, the spectra of 2,2'-BN were not resolved due to the multitude of the active torsional modes. In both cases, dissipative IVR was observed to take place with a relatively small excess vibrational energy: 237.5 cm(-1) for 1,1'-BN and 658 cm(-1) for 2,2'-BN, which clearly shows that ring torsion efficiently enhances the IVR rate. Ab initio and density functional theory calculations with medium-sized basis sets showed that the torsional potential of 1,1'-BN has a very flat minimum over the range of torsional angles from ca. 60° to 120°, whereas that of 2,2'-BN showed two well-defined potential minima at ca. 40° and 140°, in resemblance to the case of biphenyl. In this work, we propose that aromatic molecules be classified into "strong" and "weak" torsional hindrance cases: molecules with strong hindrance case show shorter torsional progressions and more effective IVR dynamics than do those with weak hindrance.


Assuntos
Naftalenos/química , Espectrofotometria Infravermelho , Termodinâmica , Vibração
16.
J Phys Chem Lett ; 13(16): 3740-3747, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35446033

RESUMO

The C-C coupling reactions of aliphatic alcohols to aromatics and larger-mass compounds have large endothermicities and activation energies, calling for catalysts operating at high temperatures. Here, we demonstrate that plasmon-excited nanoparticles catalyze the C-C coupling of aliphatic alcohols at room temperature to produce polyaromatic hydrocarbons and graphene oxide. The conversion is quenched by radical and electron scavengers and by the surface passivation of metals, suggesting that the reaction proceeds through alkoxy, peroxyl, hydroxyalkyl, and alkyl radical intermediates created by the metal to molecule transfer of plasmonic hot carriers. Besides being the first realization of C-C coupling of aliphatic alcohols at room temperature, the result constitutes a rare example of an endothermic plasmon-induced reaction producing new bonds and a new method for photogenerating graphene derivatives. More importantly, the result demonstrates the facile generation of organic radicals directly from alcohols, which may be used as precursors for radical-based organic reactions.

17.
J Phys Chem Lett ; 13(31): 7220-7227, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35912964

RESUMO

Core/shell quantum dots (QDs) have been extensively studied, yet their optical properties widely vary among studies. Such variation may arise from the variation in interfacial structures induced by the subtle difference in each synthetic procedure. Here, we studied the interfacial structures of CdSe/ZnS QDs using the time-of-flight medium energy ion-scattering spectroscopy (TOF-MEIS), which offers the radial elemental distributions as well as the overall elemental compositions of QDs. The TOF-MEIS spectra provided strong evidence for the existence of an alloyed layer at the interface between CdSe and ZnS in typical CdSe/ZnS QDs. On the basis of the emission and absorption spectra of QDs sampled during the synthesis, we conclude that such interfacial alloying is caused by the dissolution of CdSe seeds during the synthesis steps. Such a dissolution mechanism is further corroborated by the observation that the ligand environment of solvent (X or L type) leads to different shapes of interfaces.

18.
J Phys Chem Lett ; 13(13): 2969-2975, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343701

RESUMO

A well-designed narrow gap between noble metal nanostructures plays a prominent role in surface-enhanced Raman scattering (SERS) to concentrate electromagnetic fields at the local point, called a "hot spot". However, SERS-active substrate fabrication remains a substantial hurdle due to the high process cost and the difficulty of engineering efficient plasmonic hot spots at the target area. In this study, we demonstrate a simple photolithographic method for generating ultrasensitive SERS hot spots at desired positions. The solid-state dewetting of a Ag thin film (thickness of ∼10 nm) using a continuous-wave laser (∼1 MW/cm2) generates a closely packed assembly of hemispherical Ag nanoislands. Some of these nanoislands provide substantial plasmonic-field enhancement that is sufficient for single-molecule detection and plasmon-catalyzed chemical reaction. Such hot spot structures can be patterned on the substrate with a spatial resolution of better than 1 µm. In integrated analytical devices, the patterned SERS hot spots can be used as position-specific chemical-sensing elements.

19.
Nano Lett ; 10(10): 4040-8, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20857978

RESUMO

We measured the surface-enhanced Raman scattering (SERS) of individual gold nanoparticle-4-aminobenzenethiol (ABT)-gold film junctions to investigate the charge-transfer (CT) enhancement of the SERS signals. Despite the mild electromagnetic field enhancement (∼10(5)) and high surface density of the ABT-molecules (∼240 molecules/hotspot) at the junctions, we observed the clear spectral and temporal signatures of CT-enhanced single-molecule SERS (SM-SERS). The result reveals that only a small fraction of the molecules at the junction has a significant CT-enhancement of 10(1)∼10(3), whereas the rest of the molecules are nearly CT-inactive. Furthermore, the result also proves that overall (charge-transfer and electromagnetic) enhancement of 10(6)∼10(8) is sufficient to observe the SM-SERS of an electronically off-resonant molecule, which disproves the widespread belief that a minimum enhancement of ∼10(14) is required for SM-SERS.

20.
Nano Lett ; 9(10): 3619-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19624147

RESUMO

We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA