Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 34(2)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38015989

RESUMO

Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.


Assuntos
Encefalopatias , Deficiência Intelectual , Sulfotransferases , Animais , Humanos , Camundongos , Espinhas Dendríticas/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Transtornos da Memória , Camundongos Knockout , Neurônios/metabolismo , Compostos de Pralidoxima , Sulfotransferases/genética , Sulfotransferases/metabolismo
2.
Mol Pain ; 20: 17448069241245420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511285

RESUMO

Background: Scar formation after trauma and surgery involves an inflammatory response and can lead to the development of chronic pain. Neurotropin® (NTP) is a nonprotein extract of inflamed skin of rabbits inoculated with vaccinia virus. It has been widely used for the treatment of chronic pain. However, the in vivo effects of NTP on painful scar formation have not been determined. To investigate the molecular mechanisms underlying the effects of NTP on the inflammatory response, we evaluated gene expression in the scar tissues and dorsal root ganglions (DRGs) of mice administered NTP and control mice. Methods and results: Mice injected with saline or NTP were used as controls; other mice were subjected to surgery on the left hind paw to induce painful scar formation, and then injected with saline or NTP. Hind paw pain was evaluated by measuring the threshold for mechanical stimulation using the von Frey test. The paw withdrawal threshold gradually returned to pre-operative levels over 4 weeks post-operation; NTP-treated mice showed a significantly shortened recovery time of approximately 3 weeks, suggesting that NTP exerted an analgesic effect in this mouse model. Total RNA was extracted from the scarred hind paw tissues and DRGs were collected 1 week post-operation for a microarray analysis. Gene set enrichment analysis revealed that the expression of some gene sets related to inflammatory responses was activated or inhibited following surgery and NTP administration. Quantitative real-time reverse transcription-polymerase chain reaction analysis results for several genes were consistent with the microarray results. Conclusion: The administration of NTP to the hind paws of mice with painful scar formation following surgery diminished nociceptive pain and reduced the inflammatory response. NTP inhibited the expression of some genes involved in the response to surgery-induced inflammation. Therefore, NTP is a potential therapeutic option for painful scar associated with chronic pain.


Assuntos
Dor Crônica , Cicatriz , Modelos Animais de Doenças , Inflamação , Polissacarídeos , Animais , Masculino , Camundongos , Dor Crônica/tratamento farmacológico , Dor Crônica/etiologia , Cicatriz/tratamento farmacológico , Cicatriz/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Polissacarídeos/farmacologia
3.
J Biol Chem ; 296: 100115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234593

RESUMO

Heparan sulfate is synthesized by most animal cells and interacts with numerous proteins via specific sulfation motifs to regulate various physiological processes. Various 3-O-sulfated motifs are considered to be key in controlling the binding specificities to the functional proteins. One such motif synthesized by 3-O-sulfotransferase-1 (3OST-1) serves as a binding site for antithrombin (AT) and has been thoroughly studied because of its pharmacological importance. However, the physiological roles of 3-O-sulfates produced by other 3OST isoforms, which do not bind AT, remain obscure, in part due to the lack of a standard method to analyze this rare modification. This study aims to establish a method for quantifying 3-O-sulfated components of heparan sulfate, focusing on non-AT-binding units. We previously examined the reaction products of human 3OST isoforms and identified five 3-O-sulfated components, including three non-AT-binding disaccharides and two AT-binding tetrasaccharides, as digestion products of heparin lyases. In this study, we prepared these five components as a standard saccharide for HPLC analysis. Together with eight non-3-O-sulfated disaccharides, a standard mixture of 13 units was prepared. Using reverse-phase ion-pair HPLC with a postcolumn fluorescent labeling system, the separation conditions were optimized to quantify the 13 units. Finally, we analyzed the compositional changes of 3-O-sulfated units in heparan sulfate from P19 cells before and after neuronal differentiation. We successfully detected the 3-O-sulfated units specifically expressed in the differentiated neurons. This is the first report that shows the quantification of three non-AT-binding 3-O-sulfated units and establishes a new approach to explore the physiological functions of 3-O-sulfate.


Assuntos
Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Animais , Antitrombinas/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Camundongos , Neurônios/metabolismo , Sulfotransferases/metabolismo
4.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456905

RESUMO

KIAA1199 has a strong hyaluronidase activity in inflammatory arthritis. This study aimed to identify a drug that could reduce KIAA1199 activity and clarify its effects on inflammatory arthritis. Rat chondrosarcoma (RCS) cells were strongly stained with Alcian blue (AB). Its stainability was reduced in RCS cells, which were over-expressed with the KIAA1199 gene (RCS-KIAA). We screened the drugs that restore the AB stainability in RCS-KIAA. The effects of the drug were evaluated by particle exclusion assay, HA ELISA, RT-PCR, and Western blotting. We further evaluated the HA accumulation and the MMP1 and three expressions in fibroblast-like synoviocytes (FLS). In vivo, the effects of the drug on symptoms and serum concentration of HA in a collagen-induced arthritis mouse were evaluated. Ipriflavone was identified to restore AB stainability at 23%. Extracellular matrix formation was significantly increased in a dose-dependent manner (p = 0.006). Ipriflavone increased the HA accumulation and suppressed the MMP1 and MMP3 expression on TNF-α stimulated FLS. In vivo, Ipriflavone significantly improved the symptoms and reduced the serum concentrations of HA. Conclusions: We identified Ipriflavone, which has inhibitory effects on KIAA1199 activity. Ipriflavone may be a therapeutic candidate based on its reduction of KIAA1199 activity in inflammatory arthritis.


Assuntos
Artrite Experimental , Sinoviócitos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Reposicionamento de Medicamentos , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/metabolismo , Isoflavonas , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Camundongos , Ratos , Sinoviócitos/metabolismo
5.
Nat Methods ; 15(11): 889-899, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377379

RESUMO

Heparan sulfate (HS) is a complex linear polysaccharide that modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Here we report the generation of an HS-mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell. We used this library to (1) determine that the strictly defined fine structure of HS, not its overall degree of sulfation, is more important for FGF2-FGFR1 signaling; (2) define the epitope features of commonly used anti-HS phage display antibodies; and (3) delineate the fine inter-regulation networks by which HS genes modify HS and chain length in mammalian cells at a cell-type-specific level. Our mutant-cell library will allow robust and systematic interrogation of the roles and related structures of HS in a cellular context.


Assuntos
Anticorpos/imunologia , Endotélio Vascular/metabolismo , Epitopos/imunologia , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Pulmão/metabolismo , Mutação , Animais , Especificidade de Anticorpos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Pulmão/citologia , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Transdução de Sinais , Relação Estrutura-Atividade , Enxofre/química
6.
Am J Pathol ; 188(2): 432-449, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29169988

RESUMO

The hyaluronan (HA)-rich extracellular matrix plays dynamic roles during tissue remodeling. Versican and serum-derived HA-associated protein (SHAP), corresponding to the heavy chains of inter-α-trypsin inhibitor, are major HA-binding molecules in remodeling processes, such as wound healing. Versican G1-domain fragment (VG1F) is generated by proteolysis and is present in either remodeling tissues or the mature dermis. However, the macrocomplex formation of VG1F has not been clarified. Therefore, we examined the VG1F-containing macrocomplex in pressure ulcers characterized by chronic refractory wounds. VG1F colocalized with SHAP-HA in specific regions of the granulation tissue but not with fibrillin-1. A unique VG1F-SHAP-HA complex was isolated from granulation tissues using gel filtration chromatography and subsequent cesium chloride-gradient ultracentrifugation under dissociating conditions. Consistent with this molecular composition, recombinant versican G1, but not versican G3, interacted with the two heavy chains of inter-α-trypsin inhibitor. The addition of recombinant VG1 in fibroblast cultures enhanced VG1F-SHAP-HA complex deposition in the pericellular extracellular matrix. Comparison with other VG1F-containing macrocomplexes, including dermal VG1F aggregates, versican-bound microfibrils, and intact versican, highlighted the tissue-specific organization of HA-rich extracellular matrix formation containing versican and SHAP. The VG1F-SHAP-HA complex was specifically detected in the edematous granulation tissues of human pressure ulcers and in inflamed stages in a mouse model of moist would healing, suggesting that the complex provides an HA-rich matrix suitable for inflammatory reactions.


Assuntos
Tecido de Granulação/metabolismo , Ácido Hialurônico/metabolismo , Úlcera por Pressão/metabolismo , Versicanas/metabolismo , Animais , Células Cultivadas , Fibrilina-1/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos Endogâmicos ICR , Úlcera por Pressão/fisiopatologia , Ligação Proteica/fisiologia , Pele/metabolismo , Cicatrização/fisiologia
7.
Lung ; 197(3): 361-369, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31028466

RESUMO

PURPOSE: Vascular endothelial cells demonstrate severe injury in sepsis, and a reduction in endothelial inflammation would be beneficial. Inter-α-Inhibitor (IαI) is a family of abundant plasma proteins with anti-inflammatory properties and has been investigated in human and animal sepsis with encouraging results. We hypothesized that IαI may protect endothelia from sepsis-related inflammation. METHODS: IαI-deficient or sufficient mice were treated with endotoxin or underwent complement-induced lung injury. VCAM-1 and ICAM-1 expression was measured in blood and lung as marker of endothelial activation. Human endothelia were exposed to activated complement C5a with or without IαI. Blood from human sepsis patients was examined for VCAM-1 and ICAM-1 and levels were correlated with blood levels of IαI. RESULTS: IαI-deficient mice showed increased endothelial activation in endotoxin/sepsis- and complement-induced lung injury models. In vitro, levels of endothelial pro-inflammatory cytokines and cell growth factors induced by activated complement C5a were significantly decreased in the presence of IαI. This effect was associated with decreased ERK and NFκB activation. IαI levels were inversely associated with VCAM-1 and ICAM-1 levels in a human sepsis cohort. CONCLUSIONS: IαI ameliorates endothelial inflammation and may be beneficial as a treatment of sepsis.


Assuntos
Lesão Pulmonar Aguda/imunologia , alfa-Globulinas/imunologia , Células Endoteliais/imunologia , Endotélio Vascular/imunologia , Pulmão/imunologia , Sepse/imunologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , alfa-Globulinas/deficiência , alfa-Globulinas/metabolismo , alfa-Globulinas/farmacologia , Animais , Complemento C5a/imunologia , Complemento C5a/farmacologia , Modelos Animais de Doenças , Selectina E/imunologia , Selectina E/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotoxinas/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Inflamação , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , NF-kappa B/efeitos dos fármacos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Sepse/genética , Sepse/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Connect Tissue Res ; 59(2): 178-190, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28488903

RESUMO

Versican, a large chondroitin sulfate (CS) proteoglycan, serves as a structural macromolecule of the extracellular matrix (ECM) and regulates cell behavior. We determined the function of versican in dermal development using VcanΔ3/Δ3 mutant mice expressing versican with deleted A-subdomain of the N-terminal G1 domain. The mutant versican showed a decreased hyaluronan (HA)-binding ability and failed to accumulate in the ECM. In the early developmental stage, VcanΔ3/Δ3 dermis showed a decrease in versican expression as compared with WT. As development proceeded, versican expression further decreased to a barely detectable level, and VcanΔ3/Δ3 mice died at the neonatal period (P0). At P0, VcanΔ3/Δ3 dermis exhibited an impaired ECM structure and decreased cell density. While the level of collagen deposition was similar in both genotypes, collagen biosynthesis significantly decreased in VcanΔ3/Δ3 fibroblasts as compared with that in wild type (WT). Transforming growth factor ß (TGFß) signaling mediated through the Smad2/3-dependent pathway was down-regulated in VcanΔ3/Δ3 fibroblasts and a reduced TGFß storage in the ECM was observed. Microarray analysis revealed a decrease in the expression levels of transcription factors, early growth response (Egr) 2 and 4, which act downstream of TGFß signaling. Thus, our results suggest that A-subdomain is necessary for adequate versican expression in dermis and that versican is involved in the formation of the ECM and regulation of TGFß signaling.


Assuntos
Derme/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Transdução de Sinais , Versicanas/metabolismo , Animais , Células Cultivadas , Derme/citologia , Matriz Extracelular/genética , Fibroblastos/citologia , Camundongos , Mutação , Domínios Proteicos , Versicanas/genética , Versicanas/farmacologia
9.
Int J Cancer ; 140(2): 469-479, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27706810

RESUMO

Hyaluronan (HA) has been shown to play important roles in the growth, invasion and metastasis of malignant tumors. Our previous study showing that high HA expression in malignant peripheral nerve sheath tumors (MPNST) is predictive of poor patient prognosis, prompted us to speculate that inhibition of HA synthesis in MPNST might suppress the tumorigenicity. The aim of our study was to investigate the antitumor effects of 4-methylumbelliferone (MU), an HA synthesis inhibitor, on human MPNST cells and tissues. The effects of MU on HA accumulation and tumorigenicity in MPNST cells were analyzed in the presence or absence of MU in an in vitro as well as in vivo xenograft model using human MPNST cell lines, sNF96.2 (primary recurrent) and sNF02.2 (metastatic). MU significantly inhibited cell proliferation, migration and invasion in both MPNST cell lines. HA binding protein (HABP) staining, particle exclusion assay and quantification of HA revealed that MU significantly decreased HA accumulation in the cytoplasms and pericellular matrices in both MPNST cell lines. The expression levels of HA synthase2 (HAS2) and HA synthase3 (HAS3) mRNA were downregulated after treatment with MU. MU induced apoptosis of sNF96.2 cells, but not sNF02.2 cells. MU administration significantly inhibited the tumor growth of sNF96.2 cells in the mouse xenograft model. To the best of our knowledge, our study demonstrates for the first time the antitumor effects of MU on human MPNST mediated by inhibition of HA synthesis. Our results suggest that MU may be a promising agent with novel antitumor mechanisms for MPNST.


Assuntos
Antineoplásicos/farmacologia , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Neoplasias de Bainha Neural/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Neoplasias de Bainha Neural/metabolismo , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Digestion ; 95(2): 146-155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28161704

RESUMO

BACKGROUND/AIMS: We evaluated the role of serum-derived hyaluronan-associated protein (SHAP) in inflammatory bowel disease (IBD) pathogenesis and its potential as a novel IBD biomarker. METHODS: We studied the SHAP expression in a mouse model of colitis and in human intestinal samples of IBD and compared serum concentrations with normal controls. RESULTS: SHAP was expressed in the connective tissue derived from inflamed regions of the intestine. In mice, serum levels of SHAP-hyaluronic acid (SHAP-HA) were positively correlated with the histological damage of the colon (r = 0.566, p < 0.001). Serum concentration of SHAP-HA complex was significantly higher in patients with active ulcerative colitis than in those in remission, and this value was positively correlated with the erythrocyte sedimentation rate, serum level of tumor necrosis factor (TNF)-α, and endoscopic damage (r = 0.568, p < 0.001; r = 0.521, p < 0.001, and r = 0.641, p < 0.001). In patients with Crohn's disease, the serum SHAP-HA level correlated only with TNF-α (r = 0.630, p = 0.002). CONCLUSION: SHAP is a novel IBD biomarker that is related to disease activity in certain types of colitis, and it may affect disease pathogenesis. Future studies are needed to evaluate the therapeutic potential of this complex.


Assuntos
alfa-Globulinas/análise , Doenças Inflamatórias Intestinais/sangue , Mucosa Intestinal/metabolismo , alfa-Globulinas/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/sangue
11.
J Biol Chem ; 290(37): 22771-81, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26178374

RESUMO

Previously, we demonstrated that when mesenchymal stem cells (MSCs) from mouse ES cells were transplanted into skeletal muscle, more than 60% of them differentiated into muscles in the crush-injured tibialis anterior muscle in vivo, although MSCs neither differentiated nor settled in the intact muscle. Microenvironments, including the extracellular matrix between the injured and intact muscle, were quite different. In the injured muscle, hyaluronan (HA), heavy chains of inter-α-inhibitor (IαI), CD44, and TNF-α-stimulated gene 6 product (TSG-6) increased 24-48 h after injury, although basement membrane components of differentiated muscle such as perlecan, laminin, and type IV collagen increased gradually 4 days after the crush. We then investigated the microenvironments crucial for cell transplantation, using the lysate of C2C12 myotubules for mimicking injured circumstances in vivo. MSCs settled in the intact muscle when they were transplanted together with the C2C12 lysate or TSG6. MSCs produced and released TSG6 when they were cultured with C2C12 lysates in vitro. MSCs pretreated with the lysate also settled in the intact muscle. Furthermore, MSCs whose TSG6 was knocked down by shRNA, even if transplanted or pretreated with the lysate, could not settle in the muscle. Immunofluorescent staining showed that HA and IαI always co-localized or were distributed closely, suggesting formation of covalent complexes, i.e. the SHAP-HA complex in the presence of TSG6. Thus, TSG6, HA, and IαI were crucial factors for the settlement and probably the subsequent differentiation of MSCs.


Assuntos
Moléculas de Adesão Celular/biossíntese , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nicho de Células-Tronco , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Técnicas de Cocultura , Células-Tronco Mesenquimais/citologia , Camundongos , Fibras Musculares Esqueléticas/citologia
12.
BMC Genet ; 17: 52, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961984

RESUMO

BACKGROUND: Multiple osteochondroma (MO) is an autosomal dominant skeletal disorder characterized by the formation of multiple osteochondromas, and exostosin-1 (EXT1) and exostosin-2 (EXT2) are major causative genes in MO. In this study, we evaluated the genetic backgrounds and mutational patterns in Japanese families with MO. RESULTS: We evaluated 112 patients in 71 families with MO. Genomic DNA was isolated from peripheral blood leucocytes. The exons and exon/intron junctions of EXT1 and EXT2 were directly sequenced after PCR amplification. Fifty-two mutations in 47 families with MO in either EXT1 or EXT2, and 42.3% (22/52) of mutations were novel mutations. Twenty-nine families (40.8%) had mutations in EXT1, and 15 families (21.1%) had mutations in EXT2. Interestingly, three families (4.2%) had mutations in both EXT1 and EXT2. Twenty-four families (33.8%) did not exhibit mutations in either EXT1 or EXT2. With regard to the types of mutations identified, 59.6% of mutations were inactivating mutations, and 38.5% of mutations were missense mutations. CONCLUSIONS: We found that the prevalence of EXT1 mutations was greater than that of EXT2 mutations in Japanese MO families. Additionally, we identified 22 novel EXT1 and EXT2 mutations in this Japanese MO cohort. This study represents the variety of genotype in MO.


Assuntos
Povo Asiático/genética , Exostose Múltipla Hereditária/diagnóstico , Exostose Múltipla Hereditária/genética , N-Acetilglucosaminiltransferases/genética , Análise Mutacional de DNA , Éxons , Feminino , Testes Genéticos , Humanos , Íntrons , Masculino , Mutação de Sentido Incorreto
13.
J Neurosci ; 34(18): 6164-76, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790187

RESUMO

Hyaluronan (HA), a large anionic polysaccharide (glycosaminoglycan), is a major constituent of the extracellular matrix of the adult brain. To address its function, we examined the neurophysiology of knock-out mice deficient in hyaluronan synthase (Has) genes. Here we report that these Has mutant mice are prone to epileptic seizures, and that in Has3(-/-) mice, this phenotype is likely derived from a reduction in the size of the brain extracellular space (ECS). Among the three Has knock-out models, namely Has3(-/-), Has1(-/-), and Has2(CKO), the seizures were most prevalent in Has3(-/-) mice, which also showed the greatest HA reduction in the hippocampus. Electrophysiology in Has3(-/-) brain slices demonstrated spontaneous epileptiform activity in CA1 pyramidal neurons, while histological analysis revealed an increase in cell packing in the CA1 stratum pyramidale. Imaging of the diffusion of a fluorescent marker revealed that the transit of molecules through the ECS of this layer was reduced. Quantitative analysis of ECS by the real-time iontophoretic method demonstrated that ECS volume was selectively reduced in the stratum pyramidale by ∼ 40% in Has3(-/-) mice. Finally, osmotic manipulation experiments in brain slices from Has3(-/-) and wild-type mice provided evidence for a causal link between ECS volume and epileptiform activity. Our results provide the first direct evidence for the physiological role of HA in the regulation of ECS volume, and suggest that HA-based preservation of ECS volume may offer a novel avenue for development of antiepileptogenic treatments.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Espaço Extracelular/metabolismo , Glucuronosiltransferase/deficiência , Ácido Hialurônico/deficiência , Neurônios/fisiologia , Potenciais de Ação/genética , Animais , Estimulação Elétrica , Eletroencefalografia , Epilepsia/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Espaço Extracelular/genética , Glucuronosiltransferase/genética , Hialuronan Sintases , Técnicas In Vitro , Camundongos , Camundongos Knockout , Modelos Neurológicos , Mutação/genética , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Quinoxalinas/farmacologia
14.
Glycobiology ; 25(7): 735-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25677302

RESUMO

Iduronic acid (IdoA) is a critical component of heparan sulfate in its interaction with functional proteins. Heparosan-N-sulfate-glucuronate 5-epimerase (HNSG-5epi) converts d-glucuronic acid (GlcA) residues in N-sulfated heparosan (NS-heparosan), as an intermediate in heparan sulfate biosynthesis, to IdoA. In the present study, the authors discovered a different 5-epimerase, designated HG-5epi (heparosan-glucuronate 5-epimerase), that is involved in acharan sulfate biosynthesis and possesses novel substrate specificity. A candidate cDNA of HG-5epi was cloned from the cDNA library of Achatina fulica. The cloned cDNA contained a whole coding region that predicts a type II transmembrane protein composed of 601 amino acid residues. The amino acid sequence of HG-5epi is homologous to that of HNSG-5epi. Recombinant HG-5epi was expressed in insect cells and its enzymatic properties characterized. As expected, HG-5epi epimerizes GlcA residues in heparosan, but not in NS-heparosan. Conversion of IdoA to GlcA was also catalyzed by HG-5epi when completely desulfated N-acetylated heparin was used as the substrate, indicating a reversible reaction mechanism. At equilibrium of the epimerization, the proportion of IdoA in the reaction product reached up to 30% of total hexuronic acid. To our knowledge, this is the first report to describe an enzyme that catalyzes the epimerization of non-sulfated heparosan. This new enzyme may be applied to the study of synthetic heparan sulfate-related polysaccharides having certain biological and pharmacological activities. In addition, a new method using anion-exchange HPLC connected to a post-column fluorescent labeling system was developed for analyzing hexuronic acid isomers.


Assuntos
Carboidratos Epimerases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Clonagem Molecular , DNA Complementar , Humanos , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Histochem Cell Biol ; 144(2): 167-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25929745

RESUMO

In chondrogenic differentiation, expression and collaboration of specific molecules, such as aggrecan and type II collagen, in extracellular matrix (ECM) are crucial. However, few studies have clarified the roles of hyaluronan (HA) in proteoglycan aggregation during chondrogenic differentiation. We assessed the roles of HA in sulfated glycosaminoglycans deposition during chondrogenic differentiation by means of 4-methylumbelliferone (4-MU), an HA synthase inhibitor, using ATDC5 cells. ATDC5 cells were treated with 0.5 mM 4-MU for 7 or 21 days after induction of chondrogenic differentiation with insulin. Depositions of sulfated glycosaminoglycans were evaluated with Alcian blue staining. mRNA expression of ECM molecules was determined using real-time RT-PCR. The deposition of aggrecan and versican was investigated with immunohistochemical staining using specific antibodies. Effects of 4-MU on HA concentrations were analyzed by HA binding assay. 4-MU suppressed the positivity of Alcian blue staining, although this delay was reversible. Interestingly, stronger positivity of Alcian blue staining was observed at day 21 in cultures with 4-MU discontinuation than in the control. 4-MU significantly increased the mRNA expression of aggrecan, versican, and type II collagen, which was consistent with increased deposition of aggrecan and versican. The HA concentration in ECM and cell-associated region was significantly suppressed with 4-MU treatment. We conclude that the inhibition of HA synthesis slows sulfated glycosaminoglycans deposition during chondrogenic differentiation despite the increased deposition of other ECM molecules. Transient starvation of HA with 4-MU accelerates chondrogenic ECM formation, suggesting its potential to stimulate chondrogenic differentiation with adequate use.


Assuntos
Condrogênese/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Ácido Hialurônico/biossíntese , Ácido Hialurônico/química , Himecromona/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ácido Hialurônico/metabolismo , Camundongos , Relação Estrutura-Atividade
16.
J Biol Chem ; 288(6): 3705-17, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23223449

RESUMO

Heparan sulfate 6-O-sulfotransferase (HS6ST) is an enzyme involved in heparan sulfate (HS) biosynthesis that transfers a sulfate residue to position 6 of the GlcNAc/GlcNSO(3) residues of HS, and it consists of three isoforms. Heparin, the highly sulfated form of HS, resides in connective tissue mast cells and is involved in the storage of mast cell proteases (MCPs). However, it is not well understood which isoform(s) of HS6ST participates in 6-O-sulfation of heparin and how the 6-O-sulfate residues in heparin affect MCPs. To investigate these issues, we prepared fetal skin-derived mast cells (FSMCs) from wild type (WT) and HS6ST-deficient mice (HS6ST-1(-/-), HS6ST-2(-/-), and HS6ST-1(-/-)/HS6ST-2(-/-)) and determined the structure of heparin, the protease activity, and the mRNA expression of each MCP in cultured FSMCs. The activities of tryptase and carboxypeptidase-A were decreased in HS6ST-2(-/-)-FSMCs in which 6-O-sulfation of heparin was decreased at 50% of WT-FSMCs and almost lost in HS6ST-1(-/-)/HS6ST-2(-/-)-FSMCs, which lacked the 6-O-sulfation in heparin nearly completely. In contrast, chymase activity was retained even in HS6ST-1(-/-)/HS6ST-2(-/-)-FSMCs. Each MCP mRNA was not decreased in any of the mutant FSMCs. Western blot analysis showed that tryptase (mMCP-6) was almost absent from HS6ST-1(-/-)/HS6ST-2(-/-)-FSMCs indicating degradation/secretion of the enzyme protein. These observations suggest that both HS6ST-1 and HS6ST-2 are involved in 6-O-sulfation of heparin and that the proper packaging and storage of tryptase, carboxypeptidase-A, and chymase may be regulated differently by the 6-O-sulfate residues in heparin. It is thus likely that 6-O-sulfation of heparin plays important roles in regulating MCP functions.


Assuntos
Quimases/metabolismo , Heparina/metabolismo , Mastócitos/enzimologia , Pele/enzimologia , Sulfotransferases/metabolismo , Animais , Quimases/genética , Heparina/genética , Isoenzimas , Mastócitos/citologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/citologia , Sulfotransferases/genética
17.
J Biol Chem ; 288(40): 29170-81, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23963449

RESUMO

Versican G1 domain-containing fragments (VG1Fs) have been identified in extracts from the dermis in which hyaluronan (HA)-versican-fibrillin complexes are found. However, the molecular assembly of VG1Fs in the HA-versican-microfibril macrocomplex has not yet been elucidated. Here, we clarify the role of VG1Fs in the extracellular macrocomplex, specifically in mediating the recruitment of HA to microfibrils. Sequential extraction studies suggested that the VG1Fs were not associated with dermal elements through HA binding properties alone. Overlay analyses of dermal tissue sections using the recombinant versican G1 domain, rVN, showed that rVN deposited onto the elastic fiber network. In solid-phase binding assays, rVN bound to isolated nondegraded microfibrils. rVN specifically bound to authentic versican core protein produced by dermal fibroblasts. Furthermore, rVN bound to VG1Fs extracted from the dermis and to nondenatured versican but not to fibrillin-1. Homotypic binding of rVN was also seen. Consistent with these binding properties, macroaggregates containing VG1Fs were detected in high molecular weight fractions of sieved dermal extracts and visualized by electron microscopy, which revealed localization to microfibrils at the microscopic level. Importantly, exogenous rVN enhanced HA recruitment both to isolated microfibrils and to microfibrils in tissue sections in a dose-dependent manner. From these data, we propose that cleaved VG1Fs can be recaptured by microfibrils through VG1F homotypical interactions to enhance HA recruitment to microfibrils.


Assuntos
Ácido Hialurônico/metabolismo , Microfibrilas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Versicanas/química , Versicanas/metabolismo , Adulto , Idoso , Anticorpos/farmacologia , Derme/citologia , Derme/metabolismo , Derme/ultraestrutura , Elasticidade/efeitos dos fármacos , Fibrilina-1 , Fibrilinas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Ligantes , Masculino , Microfibrilas/efeitos dos fármacos , Modelos Biológicos , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/farmacologia , Relação Estrutura-Atividade , Extratos de Tecidos , Versicanas/ultraestrutura
19.
Biochem Biophys Res Commun ; 451(2): 314-8, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25094046

RESUMO

The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin·serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity.


Assuntos
Evolução Biológica , Ciona intestinalis/citologia , Ciona intestinalis/fisiologia , Mastócitos/fisiologia , Mastócitos/ultraestrutura , Sequência de Aminoácidos , Animais , Ciona intestinalis/genética , Clonagem Molecular , Evolução Molecular , Feminino , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Liberação de Histamina , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Humanos , Imunidade Inata , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Mastócitos/imunologia , Dados de Sequência Molecular , Prostaglandina D2/biossíntese , Vesículas Secretórias/fisiologia , Homologia de Sequência de Aminoácidos , Serina Proteases/metabolismo , Especificidade da Espécie
20.
Arthritis Rheum ; 65(5): 1160-70, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23335273

RESUMO

OBJECTIVE: To clarify the roles of hyaluronan (HA) in joint inflammation and the process of joint destruction, using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, in a mouse model of collagen-induced arthritis (CIA) and in a monolayer culture of fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis. METHODS: DAB/1J mice were immunized with type II collagen. The effects of 4-MU were evaluated by the physiologic arthritis score, paw swelling, the histologic arthritis score, and expression of matrix metalloproteinase 3 (MMP-3) and MMP-13 in chondrocytes and synovial tissue. In vitro, the effect of 4-MU on messenger RNA and protein expression of MMP-1 and MMP-3 was determined. The effects of 4-MU on HA deposition and on serum/medium concentrations of HA were analyzed using biotinylated HA binding protein staining and an HA binding assay, respectively. RESULTS: Treatment with 4-MU in mice with CIA dramatically decreased the severity of arthritis (based on the arthritis score), paw thickness, and histopathologic changes. MMP-3 and MMP-13 expression in chondrocytes and synovial cells was significantly inhibited by 4-MU in vivo. Treatment with 4-MU also inhibited MMP-1 and MMP-3 expression in tumor necrosis factor α-stimulated FLS, in a dose-dependent manner. The 4-MU-induced decreases in the serum HA concentration in mice with CIA and in "medium" and "pericellular" HA concentrations in cultured FLS support the contention that the inhibitory mechanism of 4-MU is mediated by HA suppression. CONCLUSION: Reduced disease activity induced by 4-MU in mice with CIA revealed HA to be a crucial regulator in the course of arthritis. Therefore, 4-MU is a potential therapeutic agent in arthritis, and its inhibitory mechanism is possibly mediated by suppression of HA synthesis.


Assuntos
Adjuvantes Imunológicos/antagonistas & inibidores , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Membrana Sinovial/metabolismo , Adjuvantes Imunológicos/biossíntese , Adjuvantes Imunológicos/sangue , Administração Oral , Animais , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Células Cultivadas , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Humanos , Ácido Hialurônico/biossíntese , Ácido Hialurônico/sangue , Himecromona/análogos & derivados , Himecromona/farmacologia , Camundongos , Camundongos Endogâmicos DBA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Joelho de Quadrúpedes/efeitos dos fármacos , Joelho de Quadrúpedes/patologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA