Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Heliyon ; 9(8): e19202, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654448

RESUMO

Vehicular SOx emissions have a huge detrimental impact on public health, catalytic converters, and the environment. Developing strategies to remove sulfur from diesel and thus safeguard the above is imperative. A series of SnO2-MoO3 mixed oxides and mono oxides MoO3 and SnO2 were prepared by soft template method, calcined at 450 °C and successfully tested in model diesel oxidative desulfurisation (ODS). The impact of the SnO2/MoO3 mole ratio (hereinafter denoted as Sn/Mo) on catalytic efficiency was investigated, among other catalytic parameters. The obtained samples were analyzed using X-ray diffraction (XRD), Raman spectrocscopy, scanning electron microscopy (SEM), N2-physisorption and titration method for acidic properties. The study demonstrates that mixing SnO2 and MoO3 improves acidic sites, crystallinity, and morphological properties of pure SnO2. The addition of MoO3 increased oxygen vacancies and the surface area of SnO2. High acidic site densities of 49.3, 47.4, and 46.7 mEqg-1 were observed for the catalysts with 2:1, 1:1, and 1:2 Sn/Mo mole ratio, respectively. The catalytic efficiency increased with an increase in Sn content with the highest catalytic efficiency of 99.8% for the dibenzothiophene (DBT) oxidation achieved in 30 min for Sn/Mo (2:1) catalyst compared to 92 and 70% for Sn/Mo 1:1 and 1:2 catalysts, respectively. The rate constant for the reaction was 0.057 min-1, which is eight times that of MoO3; 0.007 min-1 and three times that of SnO2; 0.017 min-1. The ODS mechanism utilizing the SnO2-MoO3 catalyst was proposed. The prepared SnO2-MoO3 catalyst demonstrated a high potential for industrial desulfurisation applications.

2.
Photochem Photobiol Sci ; 11(4): 692-702, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22297791

RESUMO

The effects of visible and UV light on the characteristics and properties of Prudhoe Bay (PB) and South Louisiana (SL) emulsions were investigated to better understand the role of sunlight on the fate of spilled crude oils that form emulsions with a dispersant in the aquatic environment. Before irradiation, crude oil emulsions showed the presence of dispersed crude oil micelles in a continuous water phase and crude oil components floating on the surface. The crude oil micelles decreased in size with irradiation, but emulsions retained their high degree of polydispersity. UV irradiation reduced the stability of emulsions more effectively than visible light. The reduction of micelles size caused the viscosity of emulsions to increase and melting point to decrease. Further, irradiation increased acid concentrations and induced ion formation which lowered the pH and increased the conductivity of emulsions, respectively. Ni and Fe in PB emulsions were extracted from crude oil with UV irradiation, which may provide an efficient process for metal removal. The emulsions were stable toward freeze/thaw cycles and their melting temperatures generally decreased with irradiation. Evidence of ˙OH production existed when emulsions were exposed to UV but not to visible light. The presence of H(2)O(2) enhanced the photodegradation of crude oil. Overall, the changes in emulsion properties were attributed to direct photodegradation and photooxidation of crude oil components.

3.
RSC Adv ; 12(20): 12631-12646, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35496340

RESUMO

Two-electrode electrochemical tests provide a close performance approximation to that of an actual supercapacitor device. This study presents mesoporous carbon materials successfully derived from Washingtonia robusta bark (Mexican fan palm) and their electrical performance in a 2-electrode supercapacitor device. The triad relationship among carbon materials "processing, properties, and performance" was comprehensively investigated. X-ray diffraction reveal that amorphousness increases with activating KOH ratio and decreases with both activation time and temperature. Raman spectroscopy shows an increase in structural defects and degree of graphitization with an increase in KOH ratio, temperature and time while transmission electron microscopy shows conversion of aggregated particles to materials with interconnected porosity and subsequent destruction of porosity with an increase in KOH ratio. A nitrogen-sorption study reveals varying trends between BET, micro and mesopore surface areas, however, pore size and volume and hysteresis loop size decreases with KOH ratio and temperature. Electrochemical studies on the other hand reveal that both the specific capacitance and charge-discharge time increase with KOH ratio, temperature and time while both charge transfer and Warburg resistances decrease and the phase angles increases towards the ideal -90° with an increase in KOH ratio, temperature and time. The device fabricated with the HHPB sample prepared at 700 °C, KOH ratio 3 for 60 min attained a specific capacitance of 179.3 and 169 F g-1 at a scan rate of 5 mV s-1 and current density of 0.5 A g-1, respectively, good cycling stability with 95% capacitance retention and 100% coulombic efficiency when cycled 5000 times at a current density of 2 A g-1. HHPB electrodes reveal perfect EDLC behavior with an energy density of 20 W h kg-1 and power density of 2000 W kg-1 when used in a symmetric coin supercapacitor cell with 6 M KOH solution. These findings show the potential of fan palm bark as electrode materials with good stability and high-rate capability for supercapacitor application.

4.
J Am Chem Soc ; 133(12): 4186-9, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21332136

RESUMO

Short reaction times and morphology control in the synthesis of inorganic materials under nonthermal conditions remain a challenge. Herein we report a rapid, self-templating, and nonthermal method based on ultraviolet light to prepare metal oxide hierarchical structures. With this method, the morphology of the metal oxides was controlled readily without using templates.


Assuntos
Metais/química , Óxidos/síntese química , Raios Ultravioleta , Catálise , Estrutura Molecular , Nanoestruturas/química , Óxidos/química , Tamanho da Partícula , Propriedades de Superfície
5.
Inorg Chem ; 50(3): 783-92, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21182274

RESUMO

The thermal decomposition of ammonia borane was studied using a variety of methods to qualitatively identify gas and remnant solid phase species after thermal treatments up to 1500 °C. At about 110 °C, ammonia borane begins to decompose yielding H(2) as the major gas phase product. A two step decomposition process leading to a polymeric -[NH═BH](n)- species above 130 °C is generally accepted. In this comprehensive study of decomposition pathways, we confirm the first two decomposition steps and identify a third process initiating at 1170 °C which leads to a semicrystalline hexagonal phase boron nitride. Thermogravimetric analysis (TGA) was used to identify the onset of the third step. Temperature programmed desorption-mass spectroscopy (TPD-MS) and vacuum line methods identify molecular aminoborane (H(2)N═BH(2)) as a species that can be released in appreciable quantities with the other major impurity, borazine. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to identify the chemical states present in the solid phase material after each stage of decomposition. The boron nitride product was examined for composition, structure, and morphology using scanning Auger microscopy (SAM), powder X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Thermogravimetric Analysis-Mass Spectroscopy (TGA-MS) and Differential Scanning Calorimetry (DSC) were used to identify the onset temperature of the first two mass loss events.

6.
AAS Open Res ; 4: 43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557643

RESUMO

Background: The removal of textile wastes is a priority due to their mutagenic and carcinogenic properties.  In this study, bismuth oxyhalide was used in the removal of methylene blue (MB) which is a textile waste. The main objective of this study was to develop and investigate the applicability of a bismuth oxyhalide (BiOBr zI (1-z)) solid solutions in the photodegradation of MB under solar and ultraviolet (UV) light irradiation. Methods: Bismuth oxyhalide (BiOBr zI (1-z)) (0 ≤ z ≤ 1) materials were successfully prepared through the hydrothermal method. Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), X-ray diffractometer (XRD), and scanning electron microscope (SEM) were used to determine the surface area, microstructure, crystal structure, and morphology of the resultant products. The photocatalytic performance of BiOBr zI (1-z) materials was examined through methylene blue (MB) degradation under UV light and solar irradiation. Results: The XRD showed that BiOBr zI (1-z) materials crystallized into a tetragonal crystal structure with (102) peak slightly shifting to lower diffraction angle with an increase in the amount of iodide (I -). BiOBr 0.6I 0.4 materials showed a point of zero charge of 5.29 and presented the highest photocatalytic activity in the removal of MB with 99% and 88% efficiency under solar and UV irradiation, respectively. The kinetics studies of MB removal by BiOBr zI (1-z) materials showed that the degradation process followed nonlinear pseudo-first-order model indicating that the removal of MB depends on the population of the adsorption sites. Trapping experiments confirmed that photogenerated holes (h +) and superoxide radicals ( •O 2 -) are the key species responsible for the degradation of MB. Conclusions : This study shows that bismuth oxyhalide materials are very active in the degradation of methylene blue dye using sunlight and thus they have great potential in safeguarding public health and the environment from the dye's degradation standpoint. Moreover, the experimental results agree with nonlinear fitting.

7.
J Phys Chem A ; 113(8): 1523-30, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19178167

RESUMO

The catalytic degradation of organic dye (methylene blue, MB) has been studied using green oxidation methods (tertiary-butyl hydrogen peroxide, TBHP, as the oxidant with several doped mixed-valent and regular manganese oxide catalysts in water) at room and higher temperatures. These catalysts belong to a class of porous manganese oxides known as octahedral molecular sieves (OMS). The most active catalysts were those of Mo(6+)- and V(5+)-doped OMS. Rates of reaction were found to be first-order with respect to the dye. TBHP has been found to enhance the MB decomposition, whereas H(2)O(2) does not. Reactions were studied at pH 3-11. The optimum pH for these reactions was pH 3. Dye-decomposing activity was proportional to the amount of catalyst used, and a significant increase in catalytic activity was observed with increasing temperature. X-ray diffraction (XRD), energy dispersive spectroscopy (EDX), and thermogravimetric analysis (TGA) studies showed that no changes in the catalyst structure occurred after the dye-degradation reaction. The products as analyzed by electrospray ionization mass spectrometry (ESI-MS) showed that MB was successively decomposed through different intermediate species.


Assuntos
Corantes/química , Compostos de Manganês/química , Azul de Metileno/química , Óxidos/química , Catálise , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Molibdênio/química , Oxidantes/química , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrometria por Raios X , Temperatura , Termogravimetria , Vanádio/química , Água , Difração de Raios X , terc-Butil Hidroperóxido/química
8.
Environ Sci Process Impacts ; 20(4): 642-656, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29492487

RESUMO

The methylation of mercury is known to depend on the chemical forms of mercury (Hg) present in the environment and the methylating bacterial activity. In sulfidic sediments, under conditions of supersaturation with respect to metacinnabar, recent research has shown that mercury precipitates as ß-HgS(s) nanoparticles (ß-HgS(s)nano). Few studies have examined the precipitation of ß-HgS(s)nano in the presence of marine dissolved organic matter (DOM). In this work, we used dynamic light scattering (DLS) coupled with UV-Vis spectroscopy and transmission electron microscopy (TEM) to investigate the formation and fate of ß-HgS(s)nano formed in association with marine DOM extracted from the east and west of Long Island Sound, and at the shelf break of the North Atlantic Ocean, as well as with low molecular weight thiols. We found that while the ß-HgS(s)nano formed in the presence of oceanic DOM doubled in size after 5 weeks, those forming in solutions with coastal DOM did not grow over time. In addition, when the HgII : DOM ratio was varied, ß-HgS(s)nano only rapidly aggregated at high ratios (>41 µmol HgII per mg C) where the concentration of thiol groups was determined to be substantially low relative to HgII. This suggests that functional groups other than thiols could be involved in the stabilization of ß-HgS(s)nano. Furthermore, we showed that ß-HgS(s)nano forming under anoxic conditions remained stable and could therefore persist in the environment sufficiently to impact the methylation potential. Exposure of ß-HgS(s)nano to sunlit and oxic environments, however, caused rapid aggregation and sedimentation of the nanoparticles, suggesting that photo-induced changes or oxidation of organic matter adsorbed on the surface of ß-HgS(s)nano affected their stability in surface waters.


Assuntos
Substâncias Húmicas/análise , Compostos de Mercúrio/análise , Nanopartículas/análise , Água do Mar/química , Oceano Atlântico , Modelos Teóricos , Compostos de Sulfidrila/química , Estados Unidos
9.
Nat Commun ; 4: 2952, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24335918

RESUMO

Mesoporous oxides attract a great deal of interest in many fields, including energy, catalysis and separation, because of their tunable structural properties such as surface area, pore volume and size, and nanocrystalline walls. Here we report thermally stable, crystalline, thermally controlled monomodal pore size mesoporous materials. Generation of such materials involves the use of inverse micelles, elimination of solvent effects, minimizing the effect of water content and controlling the condensation of inorganic frameworks by NO(x) decomposition. Nanosize particles are formed in inverse micelles and are randomly packed to a mesoporous structure. The mesopores are created by interconnected intraparticle voids and can be tuned from 1.2 to 25 nm by controlling the nanoparticle size. Such phenomena allow the preparation of multiple phases of the same metal oxide and syntheses of materials having compositions throughout much of the periodic table, with different structures and thermal stabilities as high as 800 °C.

11.
ACS Nano ; 7(6): 5131-41, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23651213

RESUMO

We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.


Assuntos
Cannabis/química , Capacitância Elétrica , Grafite/química , Nanoestruturas/química , Adsorção , Eletroquímica , Nitrogênio/química , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA