Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 223(2): 1009-1022, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972773

RESUMO

Genetic correlations among different components of phenotypes, especially those resulting from pleiotropy, can constrain or facilitate trait evolution. These factors could especially influence the evolution of traits that are functionally integrated, such as those comprising the flower. Indeed, pleiotropy is proposed as a main driver of repeated convergent trait transitions, including the evolution of phenotypically similar pollinator syndromes. We assessed the role of pleiotropy in the differentiation of floral and other reproductive traits between two species - Jaltomata sinuosa and J. umbellata (Solanaceae) - that have divergent suites of floral traits consistent with bee and hummingbird pollination, respectively. To do so, we generated a hybrid population and examined the genetic architecture (trait segregation and quantitative trait locus (QTL) distribution) underlying 25 floral and fertility traits. We found that most floral traits had a relatively simple genetic basis (few, predominantly additive, QTLs of moderate to large effect), as well as little evidence of antagonistic pleiotropy (few trait correlations and QTL colocalization, particularly between traits of different classes). However, we did detect a potential case of adaptive pleiotropy among floral size and nectar traits. These mechanisms may have facilitated the rapid floral trait evolution observed within Jaltomata, and may be a common component of rapid phenotypic change more broadly.


Assuntos
Biodiversidade , Evolução Biológica , Flores/genética , Alelos , Mapeamento Cromossômico , Segregação de Cromossomos , Fertilidade/genética , Fenótipo , Locos de Características Quantitativas/genética
2.
Sci Rep ; 10(1): 21632, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303799

RESUMO

Interspecific competition reduces resource availability and can affect evolution. We quantified multivariate selection in the presence and absence of strong interspecific competition using a greenhouse experiment with 35 natural accessions of Arabidopsis thaliana. We assessed selection on nine traits representing plant phenology, growth, and architecture, as well as their plasticities. Competition reduced biomass and fitness by over 98%, and plastic responses to competition varied by genotype (significant G × E) for all traits except specific leaf area (SLA). Competitive treatments altered selection on flowering phenology and plant architecture, with significant selection on all phenology traits and most architecture traits under competition-present conditions but little indication that selection occurred in the absence of competitors. Plasticity affected fitness only in competition-present conditions, where plasticity in flowering time and early internode lengths was adaptive. The competitive environment caused changes in the trait correlation structure and surprisingly reduced phenotypic integration, which helped explain some of the observed selection patterns. Despite this overall shift in the trait correlation matrix, genotypes with delayed flowering had lower SLA (thicker, tougher leaves) regardless of the competitive environment, a pattern we have not seen previously reported in the literature. Overall, our study highlights multiple ways in which interspecific competition can alter selective regimes, contributing to our understanding of variability in selection processes over space and time.


Assuntos
Arabidopsis/genética , Seleção Genética , Arabidopsis/fisiologia , Fertilidade , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA