Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37668250

RESUMO

The dynamics of wire frame particles in concentrated suspension are studied by means of a 2D model and compared to those of rod-like particles. The wire frames have bent or branched structures constructed from infinitely thin, rigid rods. In the model, a particle is surrounded by diffusing points that it cannot cross. We derive a formal expression for the mean squared displacement (MSD) and, by using a self-consistent approximation, we find markedly different dynamics for wire frames and rods. For wire frames, there exists a critical concentration of points above which they become frozen with the long time MSD reaching a plateau. Rods, on the other hand, always diffuse by reptation. We also study the rheology through the elastic stress, and more striking differences are found: the initial magnitude of the stress for wire frames is much larger than for rods, scaling such as the square of the point concentration, and above the critical concentration, the stress for wire frames appears to persist indefinitely while for rods it always decays.

2.
J Chem Phys ; 154(24): 244904, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241337

RESUMO

We study the elastic response of concentrated suspensions of rigid wire frame particles to a step strain. These particles are constructed from infinitely thin, rigid rods of length L. We specifically compare straight rod-like particles to bent and branched wire frames. In dense suspensions, the wire frames are frozen in a disordered state by the topological entanglements between their arms. We present a simple, geometric method to find the scaling of the elastic stress with concentration in these glassy systems. We apply this method to a simple 2D model system where a test particle is placed on a plane and constrained by a random distribution of points with number density ν. Two striking differences between wire frame and rod suspensions are found: (1) The linear elasticity per particle for wire frames is very large, scaling like ν2L4, whereas for rods, it is much smaller and independent of concentration. (2) Rods always shear thin but wire frames shear harden for concentrations less than ∼K/kBTL4, where K is the bending modulus of the particles. The deformation of wire frames is found to be important even for small strains, with the proportion of deformed particles at a particular strain, γ, being given by (νL2)2γ2. Our results agree well with simple numerical calculations for the 2D system.

3.
J Chem Phys ; 154(24): 244905, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241340

RESUMO

We study the elastic response of rigid wire frame particles in concentrated glassy suspensions to a step strain by applying the simple geometric methods developed in Paper I. The wire frame particles are comprised of thin rigid rods of length L, and their number density, ρ, is such that ρL3 ≫ 1. We specifically compare rigid rods to L-shapes made of two equal length rods joined at right angles. The behavior of wire frames is found to be strikingly different from that of rods. The linear elasticity scales like ρ3L6 for L-shaped particles, whereas it scales proportional to ρ for rods and the non-linear response shows a transition from shear hardening to shear softening at a critical density ρc∼K/kBTL6, where K is the bending modulus of the particles. For realistic particles made of double stranded DNA, this transition occurs at densities of about ρL3 ∼ 10. The reason for these differences is that wire frames can be forced to bend by the entanglements with their surroundings, whereas rods always remain straight. This is found to be very important even for small strains, with most particles being bent above a critical strain γc∼ρL3 -1.

4.
Thorax ; 72(4): 347-354, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27815524

RESUMO

BACKGROUND: Suboptimal adherence to inhaled steroids is common in children with asthma and is associated with poor disease control, reduced quality of life and even death. Previous studies using feedback of electronically monitored adherence data have demonstrated improved adherence, but have not demonstrated a significant impact on clinical outcomes. The aim of this study was to determine whether introduction of this approach into routine practice would result in improved clinical outcomes. METHODS: Children with asthma aged 6-16 years were randomised to the active intervention consisting of electronic adherence monitoring with daily reminder alarms together with feedback in the clinic regarding their inhaled corticosteroid (ICS) use or to the usual care arm with adherence monitoring alone. All children had poorly controlled asthma at baseline, taking ICS and long-acting ß-agonists. Subjects were seen in routine clinics every 3 months for 1 year. The primary outcome was the Asthma Control Questionnaire (ACQ) score. Secondary outcomes included adherence and markers of asthma morbidity. RESULTS: 77 of 90 children completed the study (39 interventions, 38 controls). Adherence in the intervention group was 70% vs 49% in the control group (p≤0.001). There was no significant difference in the change in ACQ, but children in the intervention group required significantly fewer courses of oral steroids (p=0.008) and fewer hospital admissions (p≤0.001). CONCLUSIONS: The results indicate that electronic adherence monitoring with feedback is likely to be of significant benefit in the routine management of poorly controlled asthmatic subjects. TRIAL REGISTRATION NUMBER: NCT02451709; pre-result.


Assuntos
Corticosteroides/administração & dosagem , Asma/tratamento farmacológico , Adesão à Medicação , Sistemas de Alerta , Administração por Inalação , Adolescente , Criança , Retroalimentação , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Qualidade de Vida , Inquéritos e Questionários
5.
Foodborne Pathog Dis ; 14(12): 687-695, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29035101

RESUMO

In the beef industry, product contamination by Salmonella enterica is a serious public health concern, which may result in human infection and cause significant financial loss due to product recalls. Currently, the precise mechanism and pathogen source responsible for Salmonella contamination in commercial establishments are not well understood. We characterized 89 S. enterica strains isolated from beef trim with respect to their biofilm-forming ability, antimicrobial resistance, and biofilm cell survival/recovery growth after sanitizer exposure. A total of 28 Salmonella serovars was identified within these strains. The most common serovars identified were Anatum, Dublin, Montevideo, and Typhimurium, with these accounting for nearly half of the total strains. The vast majority (86%) of the strains was able to develop strong biofilms, and the biofilm-forming ability was highly strain dependent and related to cell surface expression of extracellular polymeric structures. These strains also demonstrated strong tolerance to quaternary ammonium chloride (QAC) and chlorine dioxide (ClO2), but were more sensitive to chlorine treatment. Sanitizer tolerance and bacterial postsanitization recovery growth were closely associated with strains' biofilm-forming ability. Thirty percent of the examined strains were found resistant to multiple antimicrobial agents and the resistance phenotypes were serovar associated, but not related to strains' biofilm-forming ability. Pulsed-field gel electrophoresis analysis tended to group strains by serovar rather than by biofilm-forming ability. Collectively, these data indicate that the strong biofilm formers of certain S. enterica strains/serovars possess significant potential for causing meat product contamination in meat processing environment.


Assuntos
Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Farmacorresistência Bacteriana Múltipla , Carne Vermelha/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Cloro/farmacologia , Compostos Clorados/farmacologia , Contagem de Colônia Microbiana , Contaminação de Alimentos , Manipulação de Alimentos , Microbiologia de Alimentos , Técnicas de Genotipagem , Óxidos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Salmonella enterica/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 108(3): 925-30, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21059940

RESUMO

Over the past five decades, ultra high vacuum (uhv) techniques applied to well-defined single-crystal samples (the "surface science paradigm") have transformed our understanding of fundamental surface chemistry. To translate this success to the world of realistic heterogeneous catalysis, however, requires one seriously to address the fact that real heterogeneous catalysts usually operate under near-ambient or higher pressures. Nevertheless, the surface science paradigm can undoubtedly provide crucial insights into catalytic processes, so long as care is exercised in the design of experiments. Forging a secure link between two radically different pressure regimes is the major challenge, which we illustrate here with reference to the vitally important ammonia synthesis reaction, achieved industrially only under extremely high pressure.


Assuntos
Amônia/síntese química , Físico-Química/métodos , Ferro/química , Nitrogênio/química , Pressão , Catálise , Hidrogenação , Análise Espectral/métodos , Propriedades de Superfície , Vácuo
7.
PNAS Nexus ; 3(4): pgae106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566756

RESUMO

Human development has ushered in an era of converging crises: climate change, ecological destruction, disease, pollution, and socioeconomic inequality. This review synthesizes the breadth of these interwoven emergencies and underscores the urgent need for comprehensive, integrated action. Propelled by imperialism, extractive capitalism, and a surging population, we are speeding past Earth's material limits, destroying critical ecosystems, and triggering irreversible changes in biophysical systems that underpin the Holocene climatic stability which fostered human civilization. The consequences of these actions are disproportionately borne by vulnerable populations, further entrenching global inequities. Marine and terrestrial biomes face critical tipping points, while escalating challenges to food and water access foreshadow a bleak outlook for global security. Against this backdrop of Earth at risk, we call for a global response centered on urgent decarbonization, fostering reciprocity with nature, and implementing regenerative practices in natural resource management. We call for the elimination of detrimental subsidies, promotion of equitable human development, and transformative financial support for lower income nations. A critical paradigm shift must occur that replaces exploitative, wealth-oriented capitalism with an economic model that prioritizes sustainability, resilience, and justice. We advocate a global cultural shift that elevates kinship with nature and communal well-being, underpinned by the recognition of Earth's finite resources and the interconnectedness of its inhabitants. The imperative is clear: to navigate away from this precipice, we must collectively harness political will, economic resources, and societal values to steer toward a future where human progress does not come at the cost of ecological integrity and social equity.

8.
Environ Sci Technol ; 47(11): 5535-44, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23627549

RESUMO

Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.


Assuntos
Biocombustíveis , Etanol , Efeito Estufa , Veículos Automotores , Emissões de Veículos/análise , Gases , Petróleo
9.
Phys Chem Chem Phys ; 15(11): 4059-65, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23403641

RESUMO

Using single-crystal adsorption calorimetry (SCAC) and density functional theory (DFT), the interaction of carbon monoxide on fcc Co{110} is reported for the first time. The results indicate that adsorption is consistent with molecular chemisorption at all coverages. The initial heat of adsorption of 140 kJ mol(-1) is found in the range of heat values calorimetrically measured on other ferromagnetic metal surfaces, such as nickel and iron. DFT adsorption energies are in good agreement with the experimental results, and comparison between SCAC and DFT for CO on other ferromagnetic surfaces is made. The calculated dissociation barrier of 2.03 eV implies that dissociation at 300 K is unlikely even at the lowest coverage. At high coverages during the adsorption-desorption steady state regime, a pre-exponential factor for CO desorption of 1.2 × 10(17) s(-1) is found, implying a localised molecular adsorbed state prior to desorption in contrast to what we found with Ni surfaces. This result highlights the importance of the choice of the pre-exponential factor in evaluating the activation energy for desorption.

10.
J Chem Phys ; 139(18): 184708, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24320292

RESUMO

Weakening the intramolecular N-N bond is essential to promote direct hydrogenation of adsorbed N2 on catalyst surfaces. The interaction of N2 with Li on Ni{110} surfaces has been investigated. We show that the N-N bond is significantly weakened with increasing Li coverage, evidenced by large redshifts in N-N stretch frequency of up to 380 cm(-1) compared to the gas phase. Some increased thermal stability of the most weakened N2,ads states is also observed. We speculate that the various observed redshifts in N-N stretch frequency are associated with an enhanced backfilling of the 2π* antibonding orbital of N2 due to both the Li-induced surface electrostatic field, and the formation of Lix(N2)y surface complexes.


Assuntos
Lítio/química , Níquel/química , Nitrogênio/química , Adsorção , Catálise , Propriedades de Superfície
11.
Phys Rev E ; 107(6-1): 064702, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464685

RESUMO

Not every particle that forms a nematic liquid crystal makes a smectic. The particle tip is critical for this behavior. Ellipsoids do not make a smectic, but spherocylinders do. Similarly, only those N-CB alkylcyanobiphenyls with sufficiently long (N≥8 carbons) alkane tails form smectics. We understand the role of the particle tip in the smectic transition by means of a simple two-dimensional model. We model spherocylinders by "boubas" with rounded tips, and ellipsoids by "kikis" with pointed tips. The N-CB molecules are modeled by a small body with a polymer tail. We find that rounded tips and longer polymer tails lead to a smectic at lower densities by making the space between layers less accessible, destabilizing the nematic.

12.
Phys Chem Chem Phys ; 14(20): 7528-32, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22531709

RESUMO

The coverage dependent heats of adsorption and sticking probabilities for oxygen on fcc Co{110} have been measured at 300 K using single crystal adsorption calorimetry (SCAC). Initial adsorption is consistent with dissociative chemisorption at low coverage followed by oxide formation above 0.6 ML coverage. The initial heat of adsorption of 633 kJ mol(-1) is similar to heat values calorimetrically measured on other ferromagnetic metal surfaces, such as nickel and iron. As the coverage increases, the heat of adsorption and sticking probability drop very rapidly up to the onset of oxidation. As already observed for other oxygen-metal surface systems, strong lateral adatom repulsions are responsible for the transition from the chemisorption regime to oxide film formation at higher coverage. The heat of oxide formation at the onset is 475 kJ mol(-1), which is consistent with the formation of CoO crystallites. The oxide film formation is discussed in terms of nucleation and island growth, and the Mott-Cabrera mechanisms, the latter being evidenced by the relatively constant heat of adsorption and sticking probability in contrast to the nickel and iron oxidation cases.

13.
Phys Chem Chem Phys ; 14(32): 11491-9, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22801863

RESUMO

We have investigated the interaction of nitrogen with single-crystal iron pyrite FeS(2){100} surfaces in ultra-high vacuum. N(2) adsorbs molecularly at low temperatures, desorbing at 130 K, but does not adsorb dissociatively even at pressures up to 1 bar. Atomic surface N can, however, be obtained with nitrogen ions and/or excited neutral species, generated by passing N(2) through an ion gun. Substantial nitrogen-induced disorder is seen with both ions and neutrals, and no ordered N overlayers form; a decrease in the S/Fe ratio is seen when exposing to nitrogen ions. Recombinative desorption leads to temperature-programmed desorption peaks at 410 and 520-560 K which we associate with interstitial atomic N and substitutional ionic N, respectively, in the surface regions. Thermal repair of sputter damage necessitates segregation of bulk S to the surface, which, over repeated experiments, leads to gross cumulative damage to the bulk crystal. The desorption temperatures associated with recombinative desorption of atomic N from FeS(2){100} are significantly lower than those measured for Fe surfaces. This is linked to the inability of FeS(2){100} to dissociate N(2), but suggests that N(ads) will be significantly more able to react with other species than it is on Fe surfaces.


Assuntos
Ferro/química , Nitrogênio/isolamento & purificação , Sulfetos/química , Adsorção , Cristalização , Modelos Moleculares , Propriedades de Superfície , Temperatura , Vácuo
14.
J Chem Phys ; 137(7): 074703, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22920133

RESUMO

Exposing a Au{111} surface to NO(2) and then to CO at temperatures around 120 K in ultra-high vacuum gives rise to molecular overlayers in which the two species are co-adsorbed, which we have investigated using low-temperature scanning tunnelling microscopy. Under NO(2)-rich conditions, a (√7 × âˆš7)R19.1° phase with 3:1 NO(2):CO stoichiometry forms. Under CO-rich conditions, this phase co-exists with other phases having 2:1 and 1:1 NO(2):CO stoichiometries and different symmetries, and with bare Au surface. Structural models for these phases are discussed. Individual domains of the (√7 × âˆš7)R19.1° phase are chiral, by virtue of the arrangement of their achiral components, an observation that may have more general implications.

15.
J Food Prot ; 85(4): 632-638, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935943

RESUMO

ABSTRACT: Meat contamination by Salmonella enterica is a serious public health concern. Available data have suggested that biofilm formation at processing plants and contaminated contact surfaces might contribute to meat contamination. Because transfer from contact surfaces to food products via direct contact has been deemed the most common bacteria transmission route that can lead to contamination, we evaluated the effect of Salmonella biofilm forming ability, contact surface material, and beef surface tissue type on Salmonella biofilm transfer from hard surfaces to beef products. Salmonella biofilms developed on the common contact surfaces stainless steel (SS) and polyvinylchloride (PVC) were transferred consecutively via 30 s of direct contact to either lean muscle or adipose tissue surfaces of 15 pieces of beef trim. The Salmonella biofilm cells could be effectively transferred multiple times from the contact surfaces to the beef trim as indicated by quantifiable Salmonella cells on most meat samples. Biofilm forming ability had the most significant impact (P < 0.05) on transfer efficiency. More cells of Salmonella strains that formed strong biofilms were transferred after each contact and contaminated more meat samples with quantifiable cells compared with strains that formed weak biofilms. Contact surface materials also affected transferability. Salmonella biofilms on SS transferred more efficiently than did those on PVC. In contrast, the two types of meat surface tissues were not significantly different (P > 0.05) in biofilm transfer efficiency. Beef trim samples that were in contact with biofilms but did not have quantifiable Salmonella cells were positive for Salmonella after enrichment culture. Our results indicate the high potential of Salmonella biofilms on common contact surfaces in meat processing plants to cause product cross-contamination.


Assuntos
Salmonella enterica , Salmonella , Animais , Biofilmes , Bovinos , Microbiologia de Alimentos , Carne/microbiologia , Salmonella/fisiologia , Aço Inoxidável
16.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727741

RESUMO

Pork hot carcass weights (HCW) have been increasing 0.6 kg per year, and if they continue to increase at this rate, they are projected to reach an average weight of 118 kg by the year 2050. This projection in weight is a concern for pork packers and processors given the challenges in product quality from heavier carcasses of broiler chickens. However, previous work demonstrated that pork chops from heavier carcasses were more tender than those from lighter carcasses. Therefore, the objective was to determine the effects of pork hot carcass weights, ranging from 90 to 145 kg with an average of 119 kg, on slice shear force and sensory traits of Longissimus dorsi chops when cooked to 63 or 71 °C, and to assess if differences in chilling rate can explain differences in sensory traits. Carcasses were categorized retrospectively into fast, medium, or slow chilling-rates based on their chilling rate during the first 17 h postmortem. Loin chops cut from 95 boneless loins were cooked to either 63 or 71 °C and evaluated for slice shear force and trained sensory panel traits (tenderness, juiciness, and flavor) using two different research laboratories. Slopes of regression lines and coefficients of determination between HCW and sensory traits were calculated using the REG procedure in SAS and considered different from 0 at P ≤ 0.05. As hot carcass weight increased, chops became more tender as evidenced by a decrease in SSF (63 °C ß = -0.0412, P = 0.01; 71 °C ß = -0.1005, P < 0.001). Furthermore, HCW explained 25% (R2 = 0.2536) of the variation in chilling rate during the first 5 h of chilling and 32% (R2 = 0.3205) of the variation in chilling rate from 5 to 13 h postmortem. Slow- and medium-rate chilling carcasses were approximately 12 kg heavier (P < 0.05) than fast chilling carcasses. Slice shear force of chops cooked to 63 and 71 °C was reduced in slow and medium chilling compared with fast chilling carcasses. Carcass temperature at 5 h postmortem explained the greatest portion of variation (R2 = 0.071) in slice shear force of chops cooked to 63 °C. These results suggest that carcasses tend to chill slower as weight increases, which resulted in slight improvements in sensory traits of boneless pork chops regardless of final degree of doneness cooking temperature.


Pork carcass weights have increased year over year for at least the past 25 yr. The poultry industry has experienced similar increases in carcass weights in the recent past. The increases in broiler carcass weights have resulted in detrimental impacts on quality. Contrary to the poultry industry, increases in pork carcass weights have resulted in a general improvement in pork quality, including tenderness. The underlying cause of these improvements has not been explained. In the present study, chilling rate was associated with carcass weights, particularly during the first 5 h postmortem. In fact, carcass temperature measured in the Longissimus dorsi muscle at 5 h postmortem was the most predictive of instrumental tenderness values when boneless pork chops were cooked according to UDSA guidelines for whole-muscle pork products. The metabolic conversion of muscle to meat is most active during this initial chilling period. Therefore, chilling rate, which is associated with carcass weight, may be influencing the conversion of muscle to meat and provide some explanation as to why heavy carcasses result in more tender pork chops.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Galinhas , Culinária/métodos , Carne , Carne Vermelha/análise , Estudos Retrospectivos , Suínos
17.
J Am Chem Soc ; 132(7): 2175-82, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20102238

RESUMO

The catalytic properties of Au/CeO(2) systems are sensitive to the nature of Au clusters; however, atomic information on Au clusters is sparse. In this work, we use density functional theory to investigate the nucleation of small Au clusters (up to Au(11)). By depositing Au atoms one by one at a reduced CeO(2){111} surface, we present detailed nucleation patterns. Although relatively small in size, the nanoclusters obtained exhibit interesting characteristic features. In addition to the face-centered cubic (fcc) geometry, reminiscent of bulk Au, we also find the existence of novel hexagonal close-packed (hcp) structures. Furthermore, the facets of the nanoclusters are versatile, comprising {111}/{100} combinations for the fcc-like clusters and {10(1)1}/{0001} combinations for the hcp-like. Electronically, the contact layer Au atoms that bond with surface O atoms are positively charged, which could have significant implications in catalysis.

18.
Phys Rev E ; 102(3-1): 032615, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075963

RESUMO

It is well known that suspensions of particles in a viscous fluid can affect the rheology significantly, producing a pronounced non-Newtonian response even in dilute suspension. However, it is unclear a priori which particle shapes lead to this behavior. We present two simple symmetry conditions on the shape which are sufficient for a dilute suspension to be Newtonian for all strain sizes and one sufficient for Newtonian behavior for small strains. We also construct a class of shapes out of thin, rigid rods not found by the symmetry argument which share this property for small strains.

19.
J Food Prot ; 83(9): 1520-1529, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32316033

RESUMO

ABSTRACT: This research study was conducted to evaluate treatments with UVC light and a combination of UVC and ozone that have recently received attention from the beef processing industry as antimicrobial interventions that leave no chemical residues on products. The effectiveness of UVC and UVC plus gaseous ozone treatments was evaluated for inactivation of pathogenic bacteria on fresh beef and for any impact on fresh beef quality. Fresh beef tissues were inoculated with cocktails of Shiga toxin-producing Escherichia coli (STEC) strains (serotypes O26, O45, O103, O111, O121, O145, and O157:H7), Salmonella, and Listeria monocytogenes. Inoculated fresh beef tissues were subjected to UVC or UVC-ozone treatments at 106 to 590 mJ/cm2. UVC treatment alone or in combination with ozone reduced populations of STEC, Salmonella, L. monocytogenes, and aerobic bacteria from 0.86 to 1.49, 0.76 to 1.33, 0.5 to 1.14, and 0.64 to 1.23 log CFU, respectively. Gaseous ozone alone reduced populations of E. coli O157:H7, Salmonella, and L. monocytogenes by 0.65, 0.70, and 0.33 log CFU, respectively. Decimal reduction times (D-values) for STEC serotypes, Salmonella, and L. monocytogenes on surfaces of fresh beef indicated that the UVC-ozone treatment was more effective (P ≤ 0.05) than UVC light alone for reducing pathogens on the surface of fresh beef. Exposure to UVC or UVC plus gaseous ozone did not have a deleterious effect on fresh meat color and did not accelerate the formation of oxidative rancidity. These findings suggest that UVC and UVC in combination with gaseous ozone can be useful for enhancing the microbial safety of fresh beef without impairing fresh beef quality.


Assuntos
Listeria monocytogenes , Ozônio , Radiação , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Carne , Ozônio/farmacologia , Salmonella
20.
J Food Prot ; 83(8): 1438-1443, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299091

RESUMO

ABSTRACT: Prevalence of heat-resistant bacteria in beef poses a potential problem as thermal interventions are routinely used in beef processing to control contamination. Despite extreme heat-resistant (XHR) Escherichia coli having been isolated from a ground beef processing plant, there has not been a study to assess the prevalence of XHR E. coli among types of cattle. Therefore, this study used a screening assay for XHR gram-negative bacteria and its molecular determinant, the locus of heat resistance (LHR), on feces collected from U.S. cattle. Fecal samples were collected from fed (n = 538), cull dairy (n = 425), and cull beef (n = 475) cattle at nine regional beef processing plants located across the United States. Among the 1,438 cattle sampled from northern (n = 288), southern (n = 288), eastern (n = 287), western (n = 287), and central (n = 288) regions of the United States, 91 (6.3%) cattle showed presence of XHR bacteria, as evident by growth in MacConkey broth following heat treatment of 80°C for 15 min, in their feces. Heat-resistant bacteria (n = 140) were isolated from the 91 fecal samples. Prevalence of XHR bacteria was highest (11%) in cattle from the northern region. Ninety percent of the XHR isolates were identified as E. coli. Multiplex PCR of all 1,438 fecal samples showed that the LHR was absent in 40.7% of samples and intact in 18.7% of samples. Despite the higher prevalence of intact LHR from PCR analysis, only 11 samples (0.8%) were confirmed to contain bacteria with an intact LHR. The LHR was absent in 91% of XHR bacteria, and only 7.9% of XHR bacteria had intact LHR, suggesting a novel mechanism of heat resistance. By developing and using the screening assays, we established the prevalence of XHR bacteria (6.3%) and LHR+ bacteria (0.8%) in U.S. beef cattle.


Assuntos
Escherichia coli , Calor Extremo , Animais , Bovinos , Fezes , Bactérias Gram-Negativas , Prevalência , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA