Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 145(12): 6781-6797, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36918380

RESUMO

Cataracts are caused by high-molecular-weight aggregates of human eye lens proteins that scatter light, causing lens opacity. Metal ions have emerged as important potential players in the etiology of cataract disease, as human lens γ-crystallins are susceptible to metal-induced aggregation. Here, the interaction of Cu2+ ions with γD-, γC-, and γS-crystallins, the three most abundant γ-crystallins in the lens, has been evaluated. Cu2+ ions induced non-amyloid aggregation in all three proteins. Solution turbidimetry, sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE), circular dichroism, and differential scanning calorimetry showed that the mechanism for Cu-induced aggregation involves: (i) loss of ß-sheet structure in the N-terminal domain; (ii) decreased thermal and kinetic stability; (iii) formation of metal-bridged species; and (iv) formation of disulfide-bridged dimers. Isothermal titration calorimetry (ITC) revealed distinct Cu2+ binding affinities in the γ-crystallins. Electron paramagnetic resonance (EPR) revealed two distinct Cu2+ binding sites in each protein. Spin quantitation demonstrated the reduction of γ-crystallin-bound Cu2+ ions to Cu+ under aerobic conditions, while X-ray absorption spectroscopy (XAS) confirmed the presence of linear or trigonal Cu+ binding sites in γ-crystallins. Our EPR and XAS studies revealed that γ-crystallins' Cu2+ reductase activity yields a protein-based free radical that is likely a Tyr-based species in human γD-crystallin. This unique free radical chemistry carried out by distinct redox-active Cu sites in human lens γ-crystallins likely contributes to the mechanism of copper-induced aggregation. In the context of an aging human lens, γ-crystallins could act not only as structural proteins but also as key players for metal and redox homeostasis.


Assuntos
Catarata , Cristalinas , gama-Cristalinas , Humanos , gama-Cristalinas/química , Cobre/química , Íons , Oxirredutases
2.
Proc Natl Acad Sci U S A ; 114(12): 3103-3108, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270620

RESUMO

Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.


Assuntos
Microscopia Crioeletrônica , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Molecular , Bacteriófago P22 , Sítios de Ligação , Proteínas do Capsídeo/química , Microscopia Crioeletrônica/métodos , Ligação Proteica , Conformação Proteica , Reprodutibilidade dos Testes
3.
Biophys J ; 117(2): 269-280, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31266635

RESUMO

The γ-crystallins of the eye lens nucleus are among the longest-lived proteins in the human body. Synthesized in utero, they must remain folded and soluble throughout adulthood to maintain lens transparency and avoid cataracts. γD- and γS-crystallin are two major monomeric crystallins of the human lens. γD-crystallin is concentrated in the oldest lens fiber cells, the lens nucleus, whereas γS-crystallin is concentrated in the younger cells of the lens cortex. The kinetic stability parameters of these two-domain proteins and their isolated domains were determined and compared. Kinetic unfolding experiments monitored by fluorescence spectroscopy in varying concentrations of guanidinium chloride were used to extrapolate unfolding rate constants and half-lives of the crystallins in the absence of the denaturant. Consistent with their long lifespans in the lens, extrapolated half-lives for the initial unfolding step were on the timescale of years. Both proteins' isolated N-terminal domains were less kinetically stable than their respective C-terminal domains at denaturant concentrations predicted to disrupt the domain interface, but at low denaturant concentrations, the relative kinetic stabilities were reversed. Cataract-associated aggregation has been shown to proceed from partially unfolded intermediates in these proteins; their extreme kinetic stability likely evolved to protect the lens from the initiation of aggregation reactions. Our findings indicate that the domain interface is the source of significant kinetic stability. The gene duplication and fusion event that produced the modern two-domain architecture of vertebrate lens crystallins may be the origin of their high kinetic as well as thermodynamic stability.


Assuntos
Cristalino/metabolismo , gama-Cristalinas/química , gama-Cristalinas/metabolismo , Humanos , Cinética , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Temperatura , Fatores de Tempo
4.
Nature ; 502(7473): 707-10, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24107993

RESUMO

Cyanobacteria are photosynthetic organisms responsible for ∼25% of organic carbon fixation on the Earth. These bacteria began to convert solar energy and carbon dioxide into bioenergy and oxygen more than two billion years ago. Cyanophages, which infect these bacteria, have an important role in regulating the marine ecosystem by controlling cyanobacteria community organization and mediating lateral gene transfer. Here we visualize the maturation process of cyanophage Syn5 inside its host cell, Synechococcus, using Zernike phase contrast electron cryo-tomography (cryoET). This imaging modality yields dramatic enhancement of image contrast over conventional cryoET and thus facilitates the direct identification of subcellular components, including thylakoid membranes, carboxysomes and polyribosomes, as well as phages, inside the congested cytosol of the infected cell. By correlating the structural features and relative abundance of viral progeny within cells at different stages of infection, we identify distinct Syn5 assembly intermediates. Our results indicate that the procapsid releases scaffolding proteins and expands its volume at an early stage of genome packaging. Later in the assembly process, we detected full particles with a tail either with or without an additional horn. The morphogenetic pathway we describe here is highly conserved and was probably established long before that of double-stranded DNA viruses infecting more complex organisms.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Synechococcus/ultraestrutura , Synechococcus/virologia , Montagem de Vírus , Organismos Aquáticos/citologia , Organismos Aquáticos/ultraestrutura , Organismos Aquáticos/virologia , Modelos Biológicos , Synechococcus/citologia
5.
J Biol Chem ; 291(36): 19172-83, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27417136

RESUMO

Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered "amorphous," and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys(32) and Cys(41), was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal ß-hairpin and rearrangement of the native ß-sheet topology. Specific binding between the extruded hairpin and a distal ß-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation.


Assuntos
Catarata , Dissulfetos/química , Mutação de Sentido Incorreto , Agregados Proteicos , Dobramento de Proteína , gama-Cristalinas/química , Substituição de Aminoácidos , Cisteína , Dissulfetos/metabolismo , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína , gama-Cristalinas/genética , gama-Cristalinas/metabolismo
6.
Biophys J ; 110(4): 827-39, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26743049

RESUMO

CryoEM continues to produce density maps of larger and more complex assemblies with multiple protein components of mixed symmetries. Resolution is not always uniform throughout a cryoEM map, and it can be useful to estimate the resolution in specific molecular components of a large assembly. In this study, we present procedures to 1) estimate the resolution in subcomponents by gold-standard Fourier shell correlation (FSC); 2) validate modeling procedures, particularly at medium resolutions, which can include loop modeling and flexible fitting; and 3) build probabilistic models that combine high-accuracy priors (such as crystallographic structures) with medium-resolution cryoEM densities. As an example, we apply these methods to new cryoEM maps of the mature bacteriophage P22, reconstructed without imposing icosahedral symmetry. Resolution estimates based on gold-standard FSC show the highest resolution in the coat region (7.6 Å), whereas other components are at slightly lower resolutions: portal (9.2 Å), hub (8.5 Å), tailspike (10.9 Å), and needle (10.5 Å). These differences are indicative of inherent structural heterogeneity and/or reconstruction accuracy in different subcomponents of the map. Probabilistic models for these subcomponents provide new insights, to our knowledge, and structural information when taking into account uncertainty given the limitations of the observed density.


Assuntos
Bacteriófago P22/ultraestrutura , Microscopia Crioeletrônica/métodos , Modelos Estatísticos , Bacteriófago P22/química , Proteínas do Capsídeo/química , Modelos Moleculares , Conformação Proteica , Salmonella typhimurium/virologia
7.
J Biol Chem ; 290(18): 11491-503, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25787081

RESUMO

Non-native protein conformers generated by mutation or chemical damage template aggregation of wild-type, undamaged polypeptides in diseases ranging from amyotrophic lateral sclerosis to cancer. We tested for such interactions in the natively monomeric human eye lens protein γd-crystallin, whose aggregation leads to cataract disease. The oxidation-mimicking W42Q mutant of γd-crystallin formed non-native polymers starting from a native-like state under physiological conditions. Aggregation occurred in the temperature range 35-45 °C, in which the mutant protein began to lose the native conformation of its N-terminal domain. Surprisingly, wild-type γd-crystallin promoted W42Q polymerization in a catalytic manner, even at mutant concentrations too low for homogeneous nucleation to occur. The presence of wild-type protein also downshifted the temperature range of W42Q aggregation. W42Q aggregation required formation of a non-native intramolecular disulfide bond but not intermolecular cross-linking. Transient WT/W42Q binding may catalyze this oxidative misfolding event in the mutant. That a more stable variant in a mixture can specifically promote aggregation of a less stable one rationalizes how extensive aggregation of rare damaged polypeptides can occur during the course of aging.


Assuntos
Mutação , Dobramento de Proteína , Multimerização Proteica , gama-Cristalinas/química , gama-Cristalinas/genética , Sequência de Aminoácidos , Biocatálise , Temperatura Baixa , Dissulfetos/química , Humanos , Cinética , Modelos Moleculares , Oxirredução , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , gama-Cristalinas/metabolismo
8.
J Biol Chem ; 290(28): 17451-61, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25995452

RESUMO

Huntington disease, a neurodegenerative disorder characterized by functional deficits and loss of striatal neurons, is linked to an expanded and unstable CAG trinucleotide repeat in the huntingtin gene (HTT). This DNA sequence translates to a polyglutamine repeat in the protein product, leading to mutant huntingtin (mHTT) protein aggregation. The aggregation of mHTT is inhibited in vitro and in vivo by the TCP-1 ring complex (TRiC) chaperonin. Recently, a novel complex comprised of a single type of TRiC subunit has been reported to inhibit mHTT aggregation. Specifically, the purified CCT5 homo-oligomer complex, when compared with TRiC, has a similar structure, ATP use, and substrate refolding activity, and, importantly, it also inhibits mHTT aggregation. Using an aggregation suppression assay and cryoelectron tomography coupled with a novel computational classification method, we uncover the interactions between the synthetic CCT5 complex (∼ 1 MDa) and aggregates of mutant huntingtin exon 1 containing 46 glutamines (mHTTQ46-Ex1). We find that, in a similar fashion to TRiC, synthetic CCT5 complex caps mHTT fibrils at their tips and encapsulates mHTT oligomers, providing a structural description of the inhibition of mHTTQ46-Ex1 by CCT5 complex and a shared mechanism of mHTT inhibition between TRiC chaperonin and the CCT5 complex: cap and contain.


Assuntos
Chaperonina com TCP-1/química , Proteínas Mutantes/química , Proteínas do Tecido Nervoso/química , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/ultraestrutura , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura
9.
EMBO J ; 31(3): 731-40, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22193720

RESUMO

Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.


Assuntos
Nucleotídeos de Adenina/metabolismo , Chaperoninas do Grupo II/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Chaperoninas do Grupo II/química , Hidrólise , Cinética , Modelos Moleculares , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 110(30): 12301-6, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23840063

RESUMO

High-resolution structures of viruses have made important contributions to modern structural biology. Bacteriophages, the most diverse and abundant organisms on earth, replicate and infect all bacteria and archaea, making them excellent potential alternatives to antibiotics and therapies for multidrug-resistant bacteria. Here, we improved upon our previous electron cryomicroscopy structure of Salmonella bacteriophage epsilon15, achieving a resolution sufficient to determine the tertiary structures of both gp7 and gp10 protein subunits that form the T = 7 icosahedral lattice. This study utilizes recently established best practice for near-atomic to high-resolution (3-5 Å) electron cryomicroscopy data evaluation. The resolution and reliability of the density map were cross-validated by multiple reconstructions from truly independent data sets, whereas the models of the individual protein subunits were validated adopting the best practices from X-ray crystallography. Some sidechain densities are clearly resolved and show the subunit-subunit interactions within and across the capsomeres that are required to stabilize the virus. The presence of the canonical phage and jellyroll viral protein folds, gp7 and gp10, respectively, in the same virus suggests that epsilon15 may have emerged more recently relative to other bacteriophages.


Assuntos
Modelos Moleculares , Fagos de Salmonella/química , Proteínas Virais/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Conformação Proteica
11.
J Biol Chem ; 289(40): 27470-80, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25124038

RESUMO

Hereditary sensory neuropathies are a class of disorders marked by degeneration of the nerve fibers in the sensory periphery neurons. Recently, two mutations were identified in the subunits of the eukaryotic cytosolic chaperonin TRiC, a protein machine responsible for folding actin and tubulin in the cell. C450Y CCT4 was identified in a stock of Sprague-Dawley rats, whereas H147R CCT5 was found in a human Moroccan family. As with many genetically identified mutations associated with neuropathies, the underlying molecular basis of the mutants was not defined. We investigated the biochemical properties of these mutants using an expression system in Escherichia coli that produces homo-oligomeric rings of CCT4 and CCT5. Full-length versions of both mutant protein chains were expressed in E. coli at levels approaching that of the WT chains. Sucrose gradient centrifugation revealed chaperonin-sized complexes of both WT and mutant chaperonins, but with reduced recovery of C450Y CCT4 soluble subunits. Electron microscopy of negatively stained samples of C450Y CCT4 revealed few ring-shaped species, whereas WT CCT4, H147R CCT5, and WT CCT5 revealed similar ring structures. CCT5 complexes were assayed for their ability to suppress aggregation of and refold the model substrate γd-crystallin, suppress aggregation of mutant huntingtin, and refold the physiological substrate ß-actin in vitro. H147R CCT5 was not as efficient in chaperoning these substrates as WT CCT5. The subtle effects of these mutations are consistent with the homozygous disease phenotype, in which most functions are carried out during development and adulthood, but some selective function is lost or reduced.


Assuntos
Chaperonina com TCP-1/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Animais , Chaperonina com TCP-1/química , Chaperonina com TCP-1/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Dobramento de Proteína , Estabilidade Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley
12.
J Virol ; 88(4): 2047-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307583

RESUMO

The marine cyanophage Syn5 can be propagated to a high titer in the laboratory on marine photosynthetic Synechococcus sp. strain WH8109. The purified particles carry a novel slender horn structure projecting from the vertex opposite the tail vertex. The genome of Syn5 includes a number of genes coding for novel proteins. Using immune-electron microscopy with gold-labeled antibodies, we show that two of these novel proteins, products of genes 53 and 54, are part of the horn structure. A third novel protein, the product of gene 58, is assembled onto the icosahedral capsid lattice. Characterization of radioactively labeled precursor procapsids by sucrose gradient centrifugation shows that there appear to be three classes of particles-procapsids, scaffold-deficient procapsids, and expanded capsids. These lack fully assembled horn appendages. The horn presumably assembles onto the virion just before or after DNA packaging. Antibodies raised to the recombinant novel Syn5 proteins did not interfere with phage infectivity, suggesting that the functions of these proteins are not directly involved in phage attachment or infection of the host WH8109. The horn structure may represent some adaption to the marine environment, whose function will require additional investigation.


Assuntos
Bacteriófagos/genética , Proteínas do Capsídeo/metabolismo , Synechococcus/virologia , Oceano Atlântico , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Centrifugação com Gradiente de Concentração , Imuno-Histoquímica , Microscopia Imunoeletrônica
13.
J Biol Chem ; 288(5): 3545-52, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23258537

RESUMO

A single subunit DNA-dependent RNA polymerase was identified and purified to apparent homogeneity from cyanophage Syn5 that infects the marine cyanobacteria Synechococcus. Syn5 is homologous to bacteriophage T7 that infects Escherichia coli. Using the purified enzyme its promoter has been identified by examining transcription of segments of Syn5 DNA and sequencing the 5'-termini of the transcripts. Only two Syn5 RNAP promoters, having the sequence 5'-ATTGGGCACCCGTAA-3', are found within the Syn5 genome. One promoter is located within the Syn5 RNA polymerase gene and the other is located close to the right genetic end of the genome. The purified enzyme and its promoter have enabled a determination of the requirements for transcription. Unlike the salt-sensitive bacteriophage T7 RNA polymerase, this marine RNA polymerase requires 160 mm potassium for maximal activity. The optimal temperature for Syn5 RNA polymerase is 24 °C, much lower than that for T7 RNA polymerase. Magnesium is required as a cofactor although some activity is observed with ferrous ions. Syn5 RNA polymerase is more efficient in utilizing low concentrations of ribonucleotides than T7 RNA polymerase.


Assuntos
Organismos Aquáticos/virologia , Bacteriófagos/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Synechococcus/virologia , Bacteriófagos/efeitos dos fármacos , Sequência de Bases , Coenzimas/metabolismo , DNA Viral/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Metais/farmacologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ribonucleotídeos/farmacologia , Sais/farmacologia , Temperatura , Transcrição Gênica/efeitos dos fármacos
14.
J Biol Chem ; 288(24): 17734-44, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23612981

RESUMO

Chaperonins are a family of chaperones that encapsulate their substrates and assist their folding in an ATP-dependent manner. The ubiquitous eukaryotic chaperonin, TCP-1 ring complex (TRiC), is a hetero-oligomeric complex composed of two rings, each formed from eight different CCT (chaperonin containing TCP-1) subunits. Each CCT subunit may have distinct substrate recognition and ATP hydrolysis properties. We have expressed each human CCT subunit individually in Escherichia coli to investigate whether they form chaperonin-like double ring complexes. CCT4 and CCT5, but not the other six CCT subunits, formed high molecular weight complexes within the E. coli cells that sedimented about 20S in sucrose gradients. When CCT4 and CCT5 were purified, they were both organized as two back-to-back rings of eight subunits each, as seen by negative stain and cryo-electron microscopy. This morphology is consistent with that of the hetero-oligomeric double-ring TRiC purified from bovine testes and HeLa cells. Both CCT4 and CCT5 homo-oligomers hydrolyzed ATP at a rate similar to human TRiC and were active as assayed by luciferase refolding and human γD-crystallin aggregation suppression and refolding. Thus, both CCT4 and CCT5 homo-oligomers have the property of forming 8-fold double rings absent the other subunits, and these complexes carry out chaperonin reactions without other partner subunits.


Assuntos
Chaperonina com TCP-1/química , Escherichia coli , Trifosfato de Adenosina/química , Centrifugação com Gradiente de Concentração , Chaperonina 60/ultraestrutura , Chaperonina com TCP-1/biossíntese , Chaperonina com TCP-1/isolamento & purificação , Chaperonina com TCP-1/ultraestrutura , Cromatografia em Gel , Microscopia Crioeletrônica , Humanos , Hidrólise , Luciferases/química , Multimerização Proteica , Redobramento de Proteína , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , Soroalbumina Bovina/química , Temperatura de Transição , gama-Cristalinas/química
15.
Proc Natl Acad Sci U S A ; 108(26): 10514-9, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670251

RESUMO

The prevalent eye disease age-onset cataract is associated with aggregation of human γD-crystallins, one of the longest-lived proteins. Identification of the γ-crystallin precursors to aggregates is crucial for developing strategies to prevent and reverse cataract. Our microseconds of atomistic molecular dynamics simulations uncover the molecular structure of the experimentally detected aggregation-prone folding intermediate species of monomeric native γD-crystallin with a largely folded C-terminal domain and a mostly unfolded N-terminal domain. About 30 residues including a, b, and c strands from the Greek Key motif 4 of the C-terminal domain experience strong solvent exposure of hydrophobic residues as well as partial unstructuring upon N-terminal domain unfolding. Those strands comprise the domain-domain interface crucial for unusually high stability of γD-crystallin. We further simulate the intermolecular linkage of these monomeric aggregation precursors, which reveals domain-swapped dimeric structures. In the simulated dimeric structures, the N-terminal domain of one monomer is frequently found in contact with residues 135-164 encompassing the a, b, and c strands of the Greek Key motif 4 of the second molecule. The present results suggest that γD-crystallin may polymerize through successive domain swapping of those three C-terminal ß-strands leading to age-onset cataract, as an evolutionary cost of its very high stability. Alanine substitutions of the hydrophobic residues in those aggregation-prone ß-strands, such as L145 and M147, hinder domain swapping as a pathway toward dimerization. These findings thus provide critical molecular insights onto the initial stages of age-onset cataract, which is important for understanding protein aggregation diseases.


Assuntos
Catarata/metabolismo , gama-Cristalinas/metabolismo , Dimerização , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Desnaturação Proteica , gama-Cristalinas/química
16.
Proc Natl Acad Sci U S A ; 108(4): 1355-60, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21220301

RESUMO

Formation of many dsDNA viruses begins with the assembly of a procapsid, containing scaffolding proteins and a multisubunit portal but lacking DNA, which matures into an infectious virion. This process, conserved among dsDNA viruses such as herpes viruses and bacteriophages, is key to forming infectious virions. Bacteriophage P22 has served as a model system for this study in the past several decades. However, how capsid assembly is initiated, where and how scaffolding proteins bind to coat proteins in the procapsid, and the conformational changes upon capsid maturation still remain elusive. Here, we report Cα backbone models for the P22 procapsid and infectious virion derived from electron cryomicroscopy density maps determined at 3.8- and 4.0-Å resolution, respectively, and the first procapsid structure at subnanometer resolution without imposing symmetry. The procapsid structures show the scaffolding protein interacting electrostatically with the N terminus (N arm) of the coat protein through its C-terminal helix-loop-helix motif, as well as unexpected interactions between 10 scaffolding proteins and the 12-fold portal located at a unique vertex. These suggest a critical role for the scaffolding proteins both in initiating the capsid assembly at the portal vertex and propagating its growth on a T = 7 icosahedral lattice. Comparison of the procapsid and the virion backbone models reveals coordinated and complex conformational changes. These structural observations allow us to propose a more detailed molecular mechanism for the scaffolding-mediated capsid assembly initiation including portal incorporation, release of scaffolding proteins upon DNA packaging, and maturation into infectious virions.


Assuntos
Proteínas do Capsídeo/química , Vírus de DNA/metabolismo , Conformação Proteica , Montagem de Vírus , Bacteriófago P22/genética , Bacteriófago P22/metabolismo , Bacteriófago P22/ultraestrutura , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas do Core Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
17.
J Virol ; 85(5): 2406-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177804

RESUMO

Syn5 is a marine cyanophage that is propagated on the marine photosynthetic cyanobacterial strain Synechococcus sp. WH8109 under laboratory conditions. Cryoelectron images of this double-stranded DNA (dsDNA) phage reveal an icosahedral capsid with short tail appendages and a single novel hornlike structure at the vertex opposite the tail. Despite the major impact of cyanophages on life in the oceans, there is limited information on cyanophage intracellular assembly processes within their photosynthetic hosts. The one-step growth curve of Syn5 demonstrated a short cycle with an eclipse period of ∼45 min, a latent phase of ∼60 min, and a burst size of 20 to 30 particles per cell at 28°C. SDS-PAGE and Western blot analysis of cell lysates at different times after infection showed the synthesis of major virion proteins and their increase as the infection progressed. The scaffolding protein of Syn5, absent from virions, was identified in the lysates and expressed from the cloned gene. It migrated anomalously on SDS-PAGE, similar to the phage T7 scaffolding protein. Particles lacking DNA but containing the coat and scaffolding proteins were purified from Syn5-infected cells using CsCl centrifugation followed by sucrose gradient centrifugation. Electron microscopic images of the purified particles showed shells lacking condensed DNA but filled with protein density, presumably scaffolding protein. These findings suggest that the cyanophages form infectious virions through the initial assembly of scaffolding-containing procapsids, similar to the assembly pathways for the enteric dsDNA bacteriophages. Since cyanobacteria predate the enteric bacteria, this procapsid-mediated assembly pathway may have originated with the cyanophages.


Assuntos
Capsídeo/metabolismo , Podoviridae/fisiologia , Synechococcus/virologia , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Capsídeo/química , Capsídeo/ultraestrutura , Podoviridae/genética , Podoviridae/ultraestrutura , Proteínas Estruturais Virais/genética , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura
18.
J Biol Chem ; 285(36): 27958-66, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20573955

RESUMO

Chaperonins are large protein complexes consisting of two stacked multisubunit rings, which open and close in an ATP-dependent manner to create a protected environment for protein folding. Here, we describe the first crystal structure of a group II chaperonin in an open conformation. We have obtained structures of the archaeal chaperonin from Methanococcus maripaludis in both a peptide acceptor (open) state and a protein folding (closed) state. In contrast with group I chaperonins, in which the equatorial domains share a similar conformation between the open and closed states and the largest motions occurs at the intermediate and apical domains, the three domains of the archaeal chaperonin subunit reorient as a single rigid body. The large rotation observed from the open state to the closed state results in a 65% decrease of the folding chamber volume and creates a highly hydrophilic surface inside the cage. These results suggest a completely distinct closing mechanism in the group II chaperonins as compared with the group I chaperonins.


Assuntos
Chaperoninas do Grupo II/química , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Chaperoninas do Grupo II/metabolismo , Hidrólise , Mathanococcus , Modelos Moleculares , Estrutura Terciária de Proteína
19.
Exp Eye Res ; 93(4): 371-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21600897

RESUMO

Cataract affects 1 in 6 Americans over the age of 40, and represents a global health problem. Mature onset cataract is associated with the aggregation of partially unfolded or damaged proteins in the lens, which accumulate as an individual ages. Currently, surgery is the primary effective treatment for cataract. As an alternative preventive approach, small molecules have been suggested as potential therapeutic agents. In this work, we study the effect of sodium citrate on the stability of Human γD Crystallin (HγD-Crys), a structural protein of the eye lens, and two cataract-related mutants, L5S HγD-Crys and I90F HγD-Crys. In equilibrium unfolding-refolding studies, the presence of 250 mM sodium citrate increased the transition midpoint of the N-terminal domain (N-td) of WT HγD-Crys and L5S HγD-Crys by 0.3 M GuHCl, the C-terminal domain (C-td) by 0.6 M GuHCl, and the single transition of I90F HγD-Crys by 0.4 M GuHCl. In kinetic unfolding reactions, sodium citrate stabilization effect was observed only for the mutant I90F HγD-Crys. In the presence of citrate, a kinetic unfolding intermediate of I90F HγD-Crys was observed, which was not populated in the absence of citrate. The rates of aggregation were measured using solution turbidity. Sodium citrate demonstrated negligible effect on rate of aggregation of WT HγD-Crys, but considerably slowed the rate of aggregation of both L5S HγD-Crys and I90F HγD-Crys. The presence of sodium citrate dramatically slowed refolding of WT HγD-Crys and I90F HγD-Crys, but had a significantly smaller effect on the refolding of L5S HγD-Crys. The differential stabilizing effect of sodium citrate suggests that the ion is binding to a partially unfolded conformation of the C-td, but a solution-based Hofmeister effect cannot be eliminated as a possible explanation for the effects observed. These results indicate that assessment of potential anti-cataract agents needs to include effects on the unfolding and aggregation pathways, as well as the native state.


Assuntos
Citratos/farmacologia , Cristalino/química , Desnaturação Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , gama-Cristalinas/química , Catarata/metabolismo , Humanos , Dobramento de Proteína , Citrato de Sódio , Espectrometria de Fluorescência
20.
Cell Stress Chaperones ; 24(6): 1055-1065, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31410727

RESUMO

The eukaryotic cytosolic chaperonin, t-complex polypeptide 1 (TCP-1) ring complex or TRiC, is responsible for folding a tenth of the proteins in the cell. TRiC is a double-ringed barrel with each ring composed of eight different CCT (chaperonin containing TCP-1) subunits. In order for the subunits to assemble together into mature TRiC, which is believed to contain one and only one of each of these subunits per ring, they must be translated from different chromosomes, correctly folded and assembled. When expressed alone in Escherichia coli, the subunits CCT4 and CCT5, interestingly, form TRiC-like homo-oligomeric rings. To explore potential subunit-subunit interactions, we co-expressed these homo-oligomerizing CCT4 and CCT5 subunits or the archaeal chaperonin Mm-Cpn (Methanococcus maripaludis chaperonin) with CCT1-8, one at a time. We found that CCT5 shifted all of the CCT subunits, with the exception of CCT6, into double-barrel TRiC-like complexes, while CCT4 only interacted with CCT5 and CCT8 to form chaperonin rings. We hypothesize that these specific interactions may be due to the formation of hetero-oligomers in E. coli, although more work is needed for validation. We also observed the interaction of CCT5 and Mm-Cpn with smaller fragments of the CCT subunits, confirming their intrinsic chaperone activity. Based on this hetero-oligomer data, we propose that TRiC assembly relies on subunit exchange with some stable homo-oligomers, possibly CCT5, as base assembly units. Eventually, analysis of CCT arrangement in various tissues and at different developmental times is anticipated to provide additional insight on TRiC assembly and CCT subunit composition.


Assuntos
Chaperonina com TCP-1 , Clonagem Molecular/métodos , Escherichia coli/genética , Dobramento de Proteína , Multimerização Proteica/fisiologia , Subunidades Proteicas , Chaperonina com TCP-1/química , Chaperonina com TCP-1/isolamento & purificação , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA