Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur Respir J ; 50(3)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28931663

RESUMO

Cough is the most common reason to visit a primary care physician, yet it remains an unmet medical need. Fatty acid amide hydrolase (FAAH) is an enzyme that breaks down endocannabinoids, and inhibition of FAAH produces analgesic and anti-inflammatory effects. Cannabinoids inhibit vagal sensory nerve activation and the cough reflex, so it was hypothesised that FAAH inhibition would produce antitussive activity via elevation of endocannabinoids.Primary vagal ganglia neurons, tissue bioassay, in vivo electrophysiology and a conscious guinea pig cough model were utilised to investigate a role for fatty acid amides in modulating sensory nerve activation in vagal afferents.FAAH inhibition produced antitussive activity in guinea pigs with concomitant plasma elevation of the fatty acid amides N-arachidonoylethanolamide (anandamide), palmitoylethanolamide, N-oleoylethanolamide and linoleoylethanolamide. Palmitoylethanolamide inhibited tussive stimulus-induced activation of guinea pig airway innervating vagal ganglia neurons, depolarisation of guinea pig and human vagus, and firing of C-fibre afferents. These effects were mediated via a cannabinoid CB2/Gi/o-coupled pathway and activation of protein phosphatase 2A, resulting in increased calcium sensitivity of calcium-activated potassium channels.These findings identify FAAH inhibition as a target for the development of novel, antitussive agents without the undesirable side-effects of direct cannabinoid receptor agonists.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antitussígenos/uso terapêutico , Capsaicina/farmacologia , Tosse/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Compostos de Espiro/farmacologia , Adulto , Idoso , Animais , Compostos Aza/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/antagonistas & inibidores , Feminino , Cobaias , Humanos , Masculino , Pessoa de Meia-Idade , Receptor CB2 de Canabinoide/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 19(6): 1702-6, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19231185

RESUMO

A number of libraries were produced to explore the potential of 2,4-diaminopyridine lead 1. The resulting diaminopyridines proved to be potent and selective delta-opioid receptor agonists. Several rounds of lead optimisation using library chemistry identified compound 17 which went on to show efficacy in an electromyography model of neuropathic pain. The structure-activity relationship of the series against the hERG ion channel proved to be a key selectivity hurdle for the series.


Assuntos
4-Aminopiridina/análogos & derivados , Química Farmacêutica/métodos , Canais de Potássio Éter-A-Go-Go/química , Receptores Opioides delta/agonistas , 4-Aminopiridina/síntese química , 4-Aminopiridina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Linhagem Celular , Técnicas de Química Combinatória , Desenho de Fármacos , Canal de Potássio ERG1 , Eletromiografia/métodos , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Modelos Químicos , Ratos , Receptores Opioides delta/química , Relação Estrutura-Atividade
3.
Mol Pain ; 4: 2, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18197975

RESUMO

BACKGROUND: The orphan GPCR MrgE is one of an extended family of GPCRs that are expressed in dorsal root ganglia (DRG). Based on these expression patterns it has been suggested that GPCRs like MrgE may play a role in nociception however, to date, no direct supporting evidence has emerged. We generated mutant mice lacking MrgE and examined the effects of deletion of this gene in three pain behavioural models. The effect of MrgE gene deletion on expression of Mrgs and genes involved in sensory neurone function was also investigated. RESULTS: The absence of MrgE had no effect on the development of pain responses to a noxious chemical stimulus or an acute thermal stimulus. However, in contrast, the development but not the maintenance of neuropathic pain was affected by deletion of MrgE. The expression of Mrg genes was not significantly affected in the MrgE knockout (KO) mice with the sole exception of MrgF. In addition, the expression of 77 of 84 genes involved in sensory neuron development and function was also unaffected by deletion of MrgE. Of the 7 genes affected by MrgE deletion, 4 have previously been implicated in nociception. CONCLUSION: The data suggests that MrgE may play a role in selective pain behavioural responses in mice.


Assuntos
Comportamento Animal , Deleção de Genes , Dor/genética , Dor/fisiopatologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Neurônios Aferentes/metabolismo , Medição da Dor , Ratos , Receptores Acoplados a Proteínas G/genética
4.
Curr Biol ; 12(18): 1595-600, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12372252

RESUMO

Extracellular deposits of beta-amyloid (Abeta) peptide closely match areas of neuronal loss in, and are a postmortem diagnostic indicator of, Alzheimer's disease. Neuronal cultures treated with fibrillar Abeta can be protected from neurotoxicity by caspase-8 inhibition or the expression of dominant-negative FADD, both of which are components of the Fas death receptor pathway, and neurons with defective Fas and FasL are resistant to Abeta neurotoxicity. The receptor binding region of FasL can be shed from cells by metalloproteinases, and this process greatly reduces its proapoptotic activity. Here, we show that factors affecting the shedding of membrane-bound FasL significantly impact Abeta neurotoxicity. A broad-spectrum metalloproteinase inhibitor, GM6001/Ilomastat, acted synergistically with Abeta to enhance neurotoxicity through a FasL-dependent mechanism. The disruption of ADAM-based metalloproteinase activity was likely responsible, as MMP-inhibiting TIMPs had no such effect. In contrast, enhanced FasL shedding, by recombinant MMP-7, completely protected neurons from Abeta neurotoxicity. These findings suggest that factors that affect metalloproteinase-mediated shedding of FasL may play a role in the etiology of Alzheimer's disease and may provide an avenue for therapeutic intervention.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Congênicos , Apoptose , Células Cultivadas , Dipeptídeos/farmacologia , Proteína Ligante Fas , Humanos , Metaloproteinase 7 da Matriz/metabolismo , Metaloendopeptidases/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteases/farmacologia
5.
Neurosci Lett ; 417(2): 187-92, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17367933

RESUMO

Pregabalin, a 3-substituted analogue of gamma-amino butyric acid has recently been approved for treatment of neuropathic pain. We have investigated the anatomical binding profile of [(3)H] pregabalin following chronic constriction injury (CCI) and compared this with alpha 2 delta 1 subunit expression using in situ hybridisation. We report here that the intensity and distribution pattern of [(3)H] pregabalin binding is altered in the ipsilateral dorsal horn following CCI and this is associated with a corresponding increase in alpha 2 delta 1 mRNA in the ipsilateral dorsal root ganglion (DRG). It is likely that increased DRG mRNA production leads to increased alpha 2 delta 1 protein production and subsequent transport by primary afferents to the dorsal horn. The increased expression of calcium channel subunits and protein in central terminals is interesting, given that abnormal activity within sensory nerves is likely to significantly contribute to the symptomatology of neuropathic pain. The upregulation of pregabalin binding sites in sensory nerve terminals may occur as part of the response to nerve damage in neuropathic pain patients, and therefore, preferential actions of pregabalin at these sites may contribute to its mechanism of action in man.


Assuntos
Neuralgia/tratamento farmacológico , Nociceptores/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Células do Corno Posterior/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Doença Crônica/terapia , Denervação , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ligadura/efeitos adversos , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células do Corno Posterior/metabolismo , Pregabalina , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Trítio , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
6.
Neurosci Lett ; 320(1-2): 29-32, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11849756

RESUMO

A stress-activated protein kinase pathway comprising mitogen-activated protein kinase kinases (MKKs), c-Jun N-terminal kinase (JNK) and the transcription factor c-Jun is implicated in neuronal apoptosis. Using an immune-complex kinase assay, we measured the activation of MKK4 and MKK7 in low potassium (LK)-induced apoptosis of rat cerebellar granule neurons (CGN). MKK7, but not MKK4, was activated within the first 4-6 h in four independent sets of 14-h CGN apoptosis time-courses. CEP-1347 (500 nM), an mixed-lineage kinase 3 inhibitor, prevented MKK7 activation and cell death following exposure of CGN cultures to LK-induced apoptosis. Western blot analysis revealed that levels of phosphorylated c-Jun were elevated between 30 min and 10 h of CGN apoptosis, temporally consistent with MKK7 activation. These data suggest that MKK7 is responsible for activating the JNK pathway during LK-induced CGN apoptosis.


Assuntos
Apoptose/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Doenças Neurodegenerativas/enzimologia , Neurônios/enzimologia , Estresse Oxidativo/fisiologia , Deficiência de Potássio/enzimologia , Regulação para Cima/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Células Cultivadas , Córtex Cerebelar/efeitos dos fármacos , Córtex Cerebelar/enzimologia , MAP Quinase Quinase 7 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 8 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Deficiência de Potássio/fisiopatologia , Ratos , Regulação para Cima/efeitos dos fármacos
7.
Mol Ther Nucleic Acids ; 3: e145, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24496437

RESUMO

TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

8.
J Biomol Screen ; 16(7): 706-16, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21550962

RESUMO

The correct interpretation of data is fundamental to the study of G-protein-coupled receptor pharmacology. Often, new assay technologies are assimilated into the drug discovery environment without full consideration of the data generated. In this study, the authors look at µ-opioid receptor agonists in three different assays: (1) [(35)S]GTPγS binding, (2) inhibition of forskolin-stimulated cAMP production, and (3) ß-arrestin recruitment. Agonist-concentration effect curves were performed before and after treatment with the irreversible antagonist ß-funaltrexamine, and where appropriate, these data were fitted to the operational model of agonism. The Z' value was highest in the ß-arrestin assay, followed by the [(35)S]GTPγS and cAMP assays. The cAMP data fitted well to the operational model, as did the [(35)S]GTPγS data, but the [(35)S]GTPγS assay led to an apparent overestimation of K(A) values. However, in the ß-arrestin assay, data did not fit the operational model, as treatment with ß-funaltrexamine reduced the Emax proportionally to receptor number, with no change in EC(50). In addition, the EC(50) values generated correlated well with affinity values. In conclusion, the ß-arrestin recruitment assay does not fit with traditional pharmacological theory but is of great utility as the EC(50) value generated is a good approximation of affinity.


Assuntos
Receptores Opioides mu/agonistas , Arrestina/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Descoberta de Drogas/métodos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Cinética , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ligação Proteica/fisiologia , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo
9.
Adv Pharmacol Sci ; 2011: 608912, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162674

RESUMO

GABA(A) receptors containing α2/3 subunits are current targets in the battle to develop new pain medications, as they are expressed in the spinal cord where increasing inhibitory drive should result in analgesia. However, this approach is prone to a range of side effects including sedation, cognitive impairment, and abuse as a consequence of the widespread influence of GABA. The ability to make subtype selective low-efficacy benzodiazepine compounds, which potentiate the action of GABA at specific α subunits, has the potential to reduce this side effect profile. In this study, we have investigated the effects of the medium-efficacy positive allosteric modulator (PAM) L-838,417 and the low-efficacy PAM TPA023 in a number of preclinical inflammatory and neuropathic pain models. We conclude that either the higher level of efficacy at α2/3 or efficacy at α5 is required for compounds to have a significant analgesic effect in a range of models, and, therefore, although the side-effect profile of compounds can be reduced compared to typical benzodiazepines, it is unlikely that it can be completely eliminated.

10.
Mamm Genome ; 17(4): 322-31, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16596453

RESUMO

Analysis of the human repertoire of the FK506-binding protein (FKBP) family of peptidyl-prolyl cis/trans isomerases has identified an expansion of genes that code for human FKBPs in the secretory pathway. There are distinct differences in tissue distribution and expression levels of each variant. In this article we describe the characterization of human FKBP19 (Entrez Gene ID: FKBP11), an FK506-binding protein predominantly expressed in vertebrate secretory tissues. The FKBP19 sequence comprises a cleavable N-terminal signal sequence followed by a putative peptidyl-prolyl cis/trans isomerase domain with homology to FKBP12. This domain binds FK506 weakly in vitro. FKBP19 mRNA is abundant in human pancreas and other secretory tissues and high levels of FKBP19 protein are detected in the acinar cells of mouse pancreas.


Assuntos
Proteínas Recombinantes/genética , Proteínas de Ligação a Tacrolimo/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Bovinos , Clonagem Molecular , Escherichia coli/genética , Humanos , Técnicas Imunoenzimáticas , Imunossupressores/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Biossíntese de Proteínas , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/isolamento & purificação , Proteínas de Ligação a Tacrolimo/metabolismo , Transcrição Gênica
11.
Proc Natl Acad Sci U S A ; 103(46): 17537-42, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17088553

RESUMO

Neuropathic pain is a debilitating condition affecting millions of people around the world and is defined as pain that follows a lesion or dysfunction of the nervous system. This type of pain is difficult to treat, but the novel compounds pregabalin (Lyrica) and gabapentin (Neurontin) have proven clinical efficacy. Unlike traditional analgesics such as nonsteroidal antiinflammatory drugs or narcotics, these agents have no frank antiinflammatory actions and no effect on physiological pain. Although extensive preclinical studies have led to a number of suggestions, until recently their mechanism of action has not been clearly defined. Here, we describe studies on the analgesic effects of pregabalin in a mutant mouse containing a single-point mutation within the gene encoding a specific auxiliary subunit protein (alpha2-delta-1) of voltage-dependent calcium channels. The mice demonstrate normal pain phenotypes and typical responses to other analgesic drugs. We show that the mutation leads to a significant reduction in the binding affinity of pregabalin in the brain and spinal cord and the loss of its analgesic efficacy. These studies show conclusively that the analgesic actions of pregabalin are mediated through the alpha2-delta-1 subunit of voltage-gated calcium channels and establish this subunit as a therapeutic target for pain control.


Assuntos
Analgésicos/uso terapêutico , Canais de Cálcio/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Ácido gama-Aminobutírico/análogos & derivados , Sequência de Aminoácidos , Animais , Arginina/genética , Arginina/metabolismo , Autorradiografia , Sequência de Bases , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio Tipo N/metabolismo , Linhagem Celular , Chlorocebus aethiops , Constrição Patológica , Feminino , Formaldeído , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Dor/genética , Pregabalina , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Suínos , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/uso terapêutico
12.
Expert Opin Ther Targets ; 9(4): 685-98, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16083337

RESUMO

Neuropathic pain (NeP) is initiated by a lesion or dysfunction in the nervous system. Unlike physiological pain it serves no useful purpose and is usually sustained and chronic. NeP encompasses a wide range of pain syndromes of diverse aetiologies which together account for > 12 million sufferers in the US. Currently, there are a number of therapies available for NeP, including gabapentin, pregabalin, anticonvulsants (tiagabine HCl), tricyclic antidepressants (amitriptyline, nortriptyline) and acetaminophen/opioid combination products (Vicodin, Tylenol #3). However, these products do not provide sufficient pain relief and a significant proportion of sufferers are refractory (60%). Therefore, there is a need for new therapies that provide more predictable efficacy in all patients with improved tolerability. Over the last decade, understanding of the basic mechanisms contributing to the generation of NeP in preclinical animal models has greatly improved. Together with the completion of the various genome sequencing projects and significant advances in microarray and target validation strategies, new therapeutic approaches are being rigourously pursued. This article reviews the rationale behind a number of these mechanism-based approaches, briefly discusses specific challenges that they face, and finally, speculates on the potential of emerging technologies as alternative therapeutic strategies to the traditional 'small-molecule' approach.


Assuntos
Analgésicos/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Distúrbios Somatossensoriais/tratamento farmacológico , Distúrbios Somatossensoriais/metabolismo , Animais , Humanos , RNA Interferente Pequeno/farmacologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA