Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biophys J ; 122(19): 3869-3881, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571823

RESUMO

Condensin-mediated loop extrusion is now considered as the main driving force of mitotic chromosome assembly. Recent experiments have shown, however, that a class of mutant condensin complexes deficient in loop extrusion can assemble chromosome-like structures in Xenopus egg extracts, although these structures are somewhat different from those assembled by wild-type condensin complexes. In the absence of topoisomerase II (topo II), the mutant condensin complexes produce an unusual round-shaped structure termed a bean, which consists of a DNA-dense central core surrounded by a DNA-sparse halo. The mutant condensin complexes accumulate in the core, whereas histones are more concentrated in the halo than in the core. We consider that this peculiar structure serves as a model system to study how DNA entanglements, nucleosomes, and condensin functionally crosstalk with each other. To gain insight into how the bean structure is formed, here we construct a theoretical model. Our theory predicts that the core is formed by attractive interactions between mutant condensin complexes, whereas the halo is stabilized by the energy reduction through the selective accumulation of nucleosomes. The formation of the halo increases the elastic free energy due to the DNA entanglement in the core, but the latter free energy is compensated by condensin complexes that suppress the assembly of nucleosomes.


Assuntos
Mitose , Nucleossomos , Cromossomos , DNA/genética , Elasticidade
2.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858338

RESUMO

Condensin I is a multi-protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP-H), and two HEAT-repeat (CAP-D2 and CAP-G) subunits. Although balancing acts of the two HEAT-repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP-G and hCAP-H. hCAP-H binds to the concave surfaces of a harp-shaped HEAT-repeat domain of hCAP-G. Physical interaction between hCAP-G and hCAP-H is indeed essential for mitotic chromosome assembly recapitulated in Xenopus egg cell-free extracts. Furthermore, this study reveals that the human CAP-G-H subcomplex has the ability to interact with not only double-stranded DNA, but also single-stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Cromossomos/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , RNA de Cadeia Dupla/metabolismo , Alinhamento de Sequência , Xenopus laevis/metabolismo
3.
PLoS Comput Biol ; 14(6): e1006152, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912867

RESUMO

The mechanistic details underlying the assembly of rod-shaped chromosomes during mitosis and how they segregate from each other to act as individually mobile units remain largely unknown. Here, we construct a coarse-grained physical model of chromosomal DNA and condensins, a class of large protein complexes that plays key roles in these processes. We assume that condensins have two molecular activities: consecutive loop formation in DNA and inter-condensin attractions. Our simulation demonstrates that both of these activities and their balancing acts are essential for the efficient shaping and segregation of mitotic chromosomes. Our results also demonstrate that the shaping and segregation processes are strongly correlated, implying their mechanistic coupling during mitotic chromosome assembly. Our results highlight the functional importance of inter-condensin attractions in chromosome shaping and segregation.


Assuntos
Adenosina Trifosfatases , Segregação de Cromossomos/fisiologia , Cromossomos , Proteínas de Ligação a DNA , Complexos Multiproteicos , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Biologia Computacional , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Genéticos , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
4.
Mol Biol Cell ; 35(2): ar21, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088875

RESUMO

In vertebrates, two distinct condensin complexes, condensin I and condensin II, cooperate to drive mitotic chromosome assembly. It remains largely unknown how the two complexes differentially contribute to this process at a mechanistic level. We have previously dissected the role of individual subunits of condensin II by introducing recombinant complexes into Xenopus egg extracts. Here we extend these efforts by introducing a modified functional assay using extracts depleted of topoisomerase IIα (topo IIα), which allows us to further elucidate the functional similarities and differences between condensin I and condensin II. The intrinsically disordered C-terminal region of the CAP-D3 subunit (the D3 C-tail) is a major target of Cdk1 phosphorylation, and phosphorylation-deficient mutations in this region impair condensin II functions. We also identify a unique helical structure in CAP-D3 (the D3 HEAT docker) that is predicted to directly interact with CAP-G2. Deletion of the D3 HEAT docker, along with the D3 C-tail, enhances the ability of condensin II to assemble mitotic chromosomes. Taken together, we propose a self-suppression mechanism unique to condensin II that is released by mitotic phosphorylation. Evolutionary implications of our findings are also discussed.


Assuntos
Cromossomos , Proteínas de Ligação a DNA , Animais , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/genética , Adenosina Trifosfatases/genética , Mitose
5.
Elife ; 112022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35983835

RESUMO

In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes, whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The structural maintenance of chromosomes ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.


Assuntos
Adenosina Trifosfatases , Complexos Multiproteicos , Adenosina Trifosfatases/metabolismo , Animais , Cromossomos/metabolismo , Proteínas de Ligação a DNA , Mitose , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/metabolismo
6.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511239

RESUMO

Condensin I is a pentameric protein complex that plays an essential role in mitotic chromosome assembly in eukaryotic cells. Although it has been shown that condensin I loading is mitosis specific, it remains poorly understood how the robust cell cycle regulation of condensin I is achieved. Here, we set up a panel of in vitro assays to demonstrate that cell cycle-specific loading of condensin I is regulated by the N-terminal tail (N-tail) of its kleisin subunit CAP-H. Deletion of the N-tail accelerates condensin I loading and chromosome assembly in Xenopus egg mitotic extracts. Phosphorylation-deficient and phosphorylation-mimetic mutations in the CAP-H N-tail decelerate and accelerate condensin I loading, respectively. Remarkably, deletion of the N-tail enables condensin I to assemble mitotic chromosome-like structures even in interphase extracts. Together with other extract-free functional assays in vitro, our results uncover one of the multilayered mechanisms that ensure cell cycle-specific loading of condensin I onto chromosomes.


Assuntos
Adenosina Trifosfatases , Cromossomos , Ciclo Celular , Cromossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Proteínas de Ciclo Celular/genética
7.
J Cell Biol ; 221(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35045152

RESUMO

Condensin I is a five-subunit protein complex that is central to mitotic chromosome assembly in eukaryotic cells. Despite recent progress, its molecular mechanisms of action remain to be fully elucidated. By using Xenopus egg extracts as a functional assay, we find that condensin I complexes harboring mutations in its kleisin subunit CAP-H produce chromosomes with confined axes in the presence of topoisomerase IIα (topo IIα) and highly compact structures (termed "beans") with condensin-positive central cores in its absence. The bean phenotype depends on the SMC ATPase cycle and can be reversed by subsequent addition of topo IIα. The HEAT repeat subunit CAP-D2, but not CAP-G, is essential for the bean formation. Notably, loop extrusion activities of the mutant complexes cannot explain the chromosomal defects they exhibit in Xenopus egg extracts, implying that a loop extrusion-independent mechanism contributes to condensin I-mediated chromosome assembly and shaping. We provide evidence that condensin-condensin interactions underlie these processes.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Animais , Proteínas Cromossômicas não Histona/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Complexos Multiproteicos/genética , Mutação/genética , Fenótipo , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Xenopus
8.
Dev Cell ; 9(2): 237-48, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16054030

RESUMO

In vertebrates, the microtubule binding protein TPX2 is required for meiotic and mitotic spindle assembly. TPX2 is also known to bind to and activate Aurora A kinase and target it to the spindle. However, the relationship between the TPX2-Aurora A interaction and the role of TPX2 in spindle assembly is unclear. Here, we identify TPXL-1, a C. elegans protein that is the first characterized invertebrate ortholog of TPX2. We demonstrate that an essential role of TPXL-1 during mitosis is to activate and target Aurora A to microtubules. Our data suggest that this targeting stabilizes microtubules connecting kinetochores to the spindle poles. Thus, activation and targeting of Aurora A appears to be an ancient and conserved function of TPX2 that plays a central role in mitotic spindle assembly.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/fisiologia , Proteínas Quinases/metabolismo , Fuso Acromático/fisiologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinases , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Embrião não Mamífero/fisiologia , Ativação Enzimática , Humanos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Homologia de Sequência de Aminoácidos , Fuso Acromático/genética , Proteínas de Xenopus/genética
9.
J Cell Biol ; 170(7): 1039-46, 2005 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16186253

RESUMO

Centrosomes are the dominant sites of microtubule (MT) assembly during mitosis in animal cells, but it is unclear how this is achieved. Transforming acidic coiled coil (TACC) proteins stabilize MTs during mitosis by recruiting Minispindles (Msps)/XMAP215 proteins to centrosomes. TACC proteins can be phosphorylated in vitro by Aurora A kinases, but the significance of this remains unclear. We show that Drosophila melanogaster TACC (D-TACC) is phosphorylated on Ser863 exclusively at centrosomes during mitosis in an Aurora A-dependent manner. In embryos expressing only a mutant form of D-TACC that cannot be phosphorylated on Ser863 (GFP-S863L), spindle MTs are partially destabilized, whereas astral MTs are dramatically destabilized. GFP-S863L is concentrated at centrosomes and recruits Msps there but cannot associate with the minus ends of MTs. We propose that the centrosomal phosphorylation of D-TACC on Ser863 allows D-TACC-Msps complexes to stabilize the minus ends of centrosome-associated MTs. This may explain why centrosomes are such dominant sites of MT assembly during mitosis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Centrossomo/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Quinases/fisiologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Aurora Quinases , Centrossomo/química , Centrossomo/enzimologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Substâncias Macromoleculares/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Mitose , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases , Serina/fisiologia
10.
J Cell Biol ; 170(7): 1047-55, 2005 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16172205

RESUMO

Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Centrossomo/fisiologia , Microtúbulos/metabolismo , Mitose , Proteínas Quinases/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Aurora Quinases , Extratos Celulares , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/química , Oócitos/química , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas de Xenopus/metabolismo , Xenopus laevis
11.
Mol Cell Biol ; 27(1): 352-67, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17060449

RESUMO

NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Centrossomo/metabolismo , Proteínas Fetais/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Aurora Quinase A , Aurora Quinases , Movimento Celular , Células HeLa , Humanos , Katanina , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Mitose , Fosforilação , Ubiquitina/metabolismo
12.
Curr Biol ; 16(16): 1627-35, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16920624

RESUMO

Shortened kinetochore microtubules take separated chromatids to the opposing spindle poles in anaphase. Fission yeast Dis1 belongs to the Dis1/XMAP215/TOG family that is required for proper microtubule dynamics. Here, we report that Dis1is regulated by Cdc2 phosphorylation and that this mitotic phosphorylation ensures the fidelity of chromosome segregation. Whereas mutants Dis1(6A) and Dis1(6E) that substitute all of the six Cdc2 sites for Ala or Glu, respectively, produce colonies at 22 degrees C-36 degrees C, Dis1(6A) but not Dis1(6E) loses a minichromosome and reveals aberrant chromosome segregation at significant frequencies. Dis1(WT) is recruited to two regions of the mitotic spindle: kinetochores (possibly also kinetochore microtubules) in metaphase and the pole-to-pole microtubule lattice in anaphase. Mutant Dis1(6E) preferentially binds to metaphase kinetochores, whereas Dis1(6A), which is located along microtubules, fails in its accumulation at kinetochores. Dis1(6A) displays synthetic lethality with the mis12-537, which is a mutant that compromises kinetochore function. Dis1(6E) mimics the Cdc2-phosphorylated form of Dis1(WT), whereas Dis1(6A) can partially rescue the phenotype resulting form deletion of Mtc1/Alp14, another XMAP215-like protein. In anaphase, dephosphorylated Dis1 and Dis1(6A), but not Dis1(6E), move to the spindle microtubule lattice near the SPBs. Cdc2 thus directly phosphorylates Dis1, and this phosphorylation regulates Dis1 localization in both metaphase and anaphase and ensures high-fidelity segregation.


Assuntos
Proteína Quinase CDC2/metabolismo , Segregação de Cromossomos/fisiologia , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Fosforilação , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética
13.
Trends Cell Biol ; 12(6): 267-73, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12074886

RESUMO

Microtubules are essential for various cellular processes including cell division and intracellular organization. Their function depends on their ability to rearrange their distribution at different times and places. Microtubules are dynamic polymers and their behaviour is described as dynamic instability. Rearrangement of the microtubule cytoskeleton is made possible by proteins that modulate the parameters of dynamic instability. Studies using Xenopus egg extracts led to identification of a microtubule-associated protein called XMAP215 as a major regulator of physiological microtubule dynamics. XMAP215 belongs to an evolutionarily conserved protein family present in organisms ranging from yeast to mammals. Together with members of the Kin I family of kinesins, XMAP215 and its orthologues form an essential circuit for generating dynamic microtubules in vivo.


Assuntos
Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus , Animais , Cinesinas/metabolismo , Filogenia , Tubulina (Proteína)/metabolismo , Xenopus/metabolismo
14.
Neuron ; 41(2): 203-13, 2004 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-14741102

RESUMO

Doublecortin (Dcx) is a microtubule-associated protein that is mutated in X-linked lissencephaly (X-LIS), a neuronal migration disorder associated with epilepsy and mental retardation. Although Dcx can bind ubiquitously to microtubules in nonneuronal cells, Dcx is highly enriched in the leading processes of migrating neurons and the growth cone region of differentiating neurons. We present evidence that Dcx/microtubule interactions are negatively controlled by Protein Kinase A (PKA) and the MARK/PAR-1 family of protein kinases. In addition to a consensus MARK site, we identified a serine within a novel sequence that is crucial for the PKA- and MARK-dependent regulation of Dcx's microtubule binding activity in vitro. This serine is mutated in two families affected by X-LIS. Immunostaining neurons with an antibody that recognizes phosphorylated substrates of MARK supports the conclusion that Dcx localization and function are regulated at the leading edge of migrating cells by a balance of kinase and phosphatase activity.


Assuntos
Movimento Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quinase 5 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/fisiologia , Citoesqueleto/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Inibidores Enzimáticos/farmacologia , Humanos , Imuno-Histoquímica , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Mutação/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Neuritos/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Ácido Okadáico/farmacologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Serina/genética
15.
Curr Opin Cell Biol ; 46: 46-53, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28214612

RESUMO

The assembly of rod-shaped chromosomes during mitosis is an essential prerequisite for faithful segregation of genetic information into daughter cells. Despite the long history of chromosome research, it is only recently that we have acquired powerful approaches and crucial tools that help to unlock the secret of this seemingly complex process. In particular, in vitro assays, mammalian genetics, Hi-C analyses and computer simulations have provided valuable information during the past two years. These studies are now beginning to elucidate how the core components of mitotic chromosomes, namely, histones, topoisomerase IIα and condensins, cooperate with each other to convert very long stretches of DNA into rod-shaped chromosomes.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromátides/química , Cromossomos/química , Proteínas de Ligação a DNA/metabolismo , Mitose , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/química , Animais , Cromátides/metabolismo , Cromossomos/metabolismo , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/química , Histonas/química , Histonas/metabolismo , Humanos , Complexos Multiproteicos/química , Nucleossomos/química , Nucleossomos/metabolismo
16.
Dev Cell ; 33(1): 94-106, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25850674

RESUMO

Condensin I is a five-subunit protein complex that plays a central role in mitotic chromosome assembly and segregation in eukaryotes. To dissect its mechanism of action, we reconstituted wild-type and mutant complexes from recombinant subunits and tested their abilities to assemble chromosomes in Xenopus egg cell-free extracts depleted of endogenous condensins. We find that ATP binding and hydrolysis by SMC subunits have distinct contributions to the action of condensin I and that continuous ATP hydrolysis is required for structural maintenance of chromosomes. Mutant complexes lacking either one of two HEAT subunits produce abnormal chromosomes with highly characteristic defects and have contrasting structural effects on chromosome axes preassembled with the wild-type complex. We propose that balancing acts of the two HEAT subunits support dynamic assembly of chromosome axes under the control of the SMC ATPase cycle, thereby governing construction of rod-shaped chromosomes in eukaryotic cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Xenopus laevis/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Segregação de Cromossomos , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Feminino , Imunofluorescência , Imunoprecipitação , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Subunidades Proteicas , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
17.
J Cachexia Sarcopenia Muscle ; 6(3): 237-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26401470

RESUMO

BACKGROUND: In Japan, growth hormone releasing peptide-2 (GHRP-2) is clinically used as a diagnostic agent for growth hormone secretion deficiency, but the therapeutic application of GHRP-2 has not been studied in anorexia nervosa. GHRP-2 reportedly exhibits agonistic action for ghrelin receptor and increases food intake. METHODS: We administered GHRP-2 to a patient with a 20-year history of anorexia nervosa to determine whether GHRP-2 treatment increases food intake and body weight. GHRP-2 was administered before every meal by an intranasal approach for 1 year. RESULTS: Although the patient reported a decreased fear of eating and decreased desire to be thin by our previous treatment, she was unable to increase food intake or body weight because of digestive tract dysfunction. Vomiting after meals caused by delayed gastric emptying and incurable constipation were prolonged, and sub-ileus and hypoglycemia were observed. GHRP-2 increased the feeling of hunger and food intake, decreased early satiety and improved hypoglycemia. The patient's body weight gradually increased by 6.7 kg (from 21.1 kg to 27.8 kg) in 14 months after starting GHRP-2 administration. The fatigability and muscle strength improved, and the physical and mental activities were also increased. No obvious side effects were observed after long-term intranasal administration of GHRP-2. CONCLUSIONS: Patients with a long-term history of eating disorder occasionally recover from the psychological problems such as fear for obesity but remain emaciated. We believe that ghrelin agonists such as GHRP-2 may be promising agents for the effective treatments of severe anorexia nervosa in a chronic condition.

20.
Cell ; 132(1): 79-88, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18191222

RESUMO

Fast growth of microtubules is essential for rapid assembly of the microtubule cytoskeleton during cell proliferation and differentiation. XMAP215 belongs to a conserved family of proteins that promote microtubule growth. To determine how XMAP215 accelerates growth, we developed a single-molecule assay to visualize directly XMAP215-GFP interacting with dynamic microtubules. XMAP215 binds free tubulin in a 1:1 complex that interacts with the microtubule lattice and targets the ends by a diffusion-facilitated mechanism. XMAP215 persists at the plus end for many rounds of tubulin subunit addition in a form of "tip tracking." These results show that XMAP215 is a processive polymerase that directly catalyzes the addition of up to 25 tubulin dimers to the growing plus end. Under some circumstances XMAP215 can also catalyze the reverse reaction, namely microtubule shrinkage. The similarities between XMAP215 and formins, actin polymerases, suggest that processive tip tracking is a common mechanism for stimulating the growth of cytoskeletal polymers.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Sítios de Ligação/fisiologia , Bioensaio/métodos , Domínio Catalítico/fisiologia , Diferenciação Celular/fisiologia , Crescimento Celular , Linhagem Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Difusão , Dimerização , Proteínas Fetais/metabolismo , Forminas , Proteínas de Fluorescência Verde/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Proteínas Nucleares/metabolismo , Polímeros/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Spodoptera , Sus scrofa , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA