Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 31(9): 2027-2036.e8, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705715

RESUMO

Adaptation is typically studied by comparing modern populations with contrasting environments. Individuals persisting in the ancestral habitat are typically used to represent the ancestral founding population; however, it has been questioned whether these individuals are good proxies for the actual ancestors.1 To address this, we applied a paleogenomics approach2 to directly access the ancestral genepool: partially sequencing the genomes of two 11- to 13,000-year-old stickleback recovered from the transitionary layer between marine and freshwater sediments of two Norwegian isolation lakes3 and comparing them with 30 modern stickleback genomes from the same lakes and adjacent marine fjord, in addition to a global dataset of 20 genomes.4 The ancient stickleback shared genome-wide ancestry with the modern fjord population, whereas modern lake populations have lost substantial ancestral variation following founder effects, and subsequent drift and selection. Freshwater-adaptive alleles found in one ancient stickleback genome have not risen to high frequency in the present-day population from the same lake. Comparison to the global dataset suggested incomplete adaptation to freshwater in our modern lake populations. Our findings reveal the impact of population bottlenecks in constraining adaptation due to reduced efficacy of selection on standing variation present in founder populations.


Assuntos
Smegmamorpha , Alelos , Animais , Demografia , Genômica , Humanos , Recém-Nascido , Lagos , Paleontologia , Smegmamorpha/genética
2.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34144992

RESUMO

Similar forms often evolve repeatedly in nature, raising long-standing questions about the underlying mechanisms. Here, we use repeated evolution in stickleback to identify a large set of genomic loci that change recurrently during colonization of freshwater habitats by marine fish. The same loci used repeatedly in extant populations also show rapid allele frequency changes when new freshwater populations are experimentally established from marine ancestors. Marked genotypic and phenotypic changes arise within 5 years, facilitated by standing genetic variation and linkage between adaptive regions. Both the speed and location of changes can be predicted using empirical observations of recurrence in natural populations or fundamental genomic features like allelic age, recombination rates, density of divergent loci, and overlap with mapped traits. A composite model trained on these stickleback features can also predict the location of key evolutionary loci in Darwin's finches, suggesting that similar features are important for evolution across diverse taxa.

3.
Nat Commun ; 8(1): 1671, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150615

RESUMO

Cybergenetics is a novel field of research aiming at remotely pilot cellular processes in real-time with to leverage the biotechnological potential of synthetic biology. Yet, the control of only a small number of genetic circuits has been tested so far. Here we investigate the control of multistable gene regulatory networks, which are ubiquitously found in nature and play critical roles in cell differentiation and decision-making. Using an in silico feedback control loop, we demonstrate that a bistable genetic toggle switch can be dynamically maintained near its unstable equilibrium position for extended periods of time. Importantly, we show that a direct method based on dual periodic forcing is sufficient to simultaneously maintain many cells in this undecided state. These findings pave the way for the control of more complex cell decision-making systems at both the single cell and the population levels, with vast fundamental and biotechnological applications.


Assuntos
Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genes de Troca/genética , Transdução de Sinais/genética , Algoritmos , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Biologia Sintética/métodos , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA