Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920510

RESUMO

The process of end-joining during nonhomologous repair of DNA double-strand breaks (DSBs) after radiation damage is considered. Experimental evidence has revealed that the dynamics of DSB ends exhibit subdiffusive motion rather than simple diffusion with rare directional movement. Traditional models often overlook the rare long-range directed motion. To address this limitation, we present a heterogeneous anomalous diffusion model consisting of subdiffusive fractional Brownian motion interchanged with short periods of long-range movement. Our model sheds light on the underlying mechanisms of heterogeneous diffusion in DSB repair and could be used to quantify the DSB dynamics on a time scale inaccessible to single particle tracking analysis. The model predicts that the long-range movement of DSB ends is responsible for the misrepair of DSBs in the form of dicentric chromosome lesions.

2.
Mutagenesis ; 37(1): 3-12, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137176

RESUMO

Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.


Assuntos
Citocinese , Linfócitos , Dano ao DNA , Testes para Micronúcleos/métodos , Radiação Ionizante
3.
PLoS Comput Biol ; 16(12): e1008476, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326415

RESUMO

Developments in the genome organisation field has resulted in the recent methodology to infer spatial conformations of the genome directly from experimentally measured genome contacts (Hi-C data). This provides a detailed description of both intra- and inter-chromosomal arrangements. Chromosomal intermingling is an important driver for radiation-induced DNA mis-repair. Which is a key biological endpoint of relevance to the fields of cancer therapy (radiotherapy), public health (biodosimetry) and space travel. For the first time, we leverage these methods of inferring genome organisation and couple them to nano-dosimetric radiation track structure modelling to predict quantities and distribution of DNA damage within cell-type specific geometries. These nano-dosimetric simulations are highly dependent on geometry and are benefited from the inclusion of experimentally driven chromosome conformations. We show how the changes in Hi-C contract maps impact the inferred geometries resulting in significant differences in chromosomal intermingling. We demonstrate how these differences propagate through to significant changes in the distribution of DNA damage throughout the cell nucleus, suggesting implications for DNA repair fidelity and subsequent cell fate. We suggest that differences in the geometric clustering for the chromosomes between the cell-types are a plausible factor leading to changes in cellular radiosensitivity. Furthermore, we investigate changes in cell shape, such as flattening, and show that this greatly impacts the distribution of DNA damage. This should be considered when comparing in vitro results to in vivo systems. The effect may be especially important when attempting to translate radiosensitivity measurements at the experimental in vitro level to the patient or human level.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA/efeitos da radiação , Genoma , Neoplasias/tratamento farmacológico , Cromossomos/efeitos da radiação , Análise por Conglomerados , Simulação por Computador , Humanos , Tolerância a Radiação
4.
Comput Phys Commun ; 252: 107131, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32624585

RESUMO

A new method to locate, with millimetre uncertainty, in 3D, a γ -ray source emitting multiple γ -rays in a cascade, employing conventional LaBr3(Ce) scintillation detectors, has been developed. Using 16 detectors in a symmetrical configuration the detector energy and time signals, resulting from the γ -ray interactions, are fed into a new source position reconstruction algorithm. The Monte-Carlo based Geant4 framework has been used to simulate the detector array and a 60Co source located at two positions within the spectrometer central volume. For a source located at (0,0,0) the algorithm reports X, Y, Z values of -0.3 ± 2.5, -0.4 ± 2.4, and -0.6 ± 2.5 mm, respectively. For a source located at (20,20,20) mm, with respect to the array centre, the algorithm reports X, Y, Z values of 20.2 ± 1.0, 20.2 ± 0.9, and 20.1 ± 1.2 mm. The resulting precision of the reconstruction means that this technique could find application in a number of areas including nuclear medicine, national security, radioactive waste assay and proton beam therapy.

5.
Sens Actuators B Chem ; 239: 1134-1143, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29515291

RESUMO

Vertical Microbeams (VMB) are used to irradiate individual cells with low MeV energy ions. The irradiation of cells using VMBs requires cells to be removed from an incubator; this can cause physiological changes to cells because of the lower CO2 concentration, temperature and relative humidity outside of the incubator. Consequently, for experiments where cells require irradiation and observation for extended time periods, it is important to provide a controlled environment. The highly customised nature of the microscopes used on VMB systems means that there are no commercially available environmentally controlled microscope systems for VMB systems. The Automated Microbeam Observation Environment for Biological Analysis (AMOEBA) is a highly flexible modular environmental control system used to create incubator conditions on the end of a VMB. The AMOEBA takes advantage of the recent "maker" movement to create an open source control system that can be easily configured by the user to fit their control needs even beyond VMB applications. When applied to the task of controlling cell medium temperature, CO2 concentration and relative humidity on VMBs it creates a stable environment that allows cells to multiply on the end of a VMB over a period of 36 h, providing a low-cost (costing less than $2700 to build), customisable alternative to commercial time-lapse microscopy systems. AMOEBA adds the potential of VMBs to explore the long-term effects of radiation on single cells opening up new research areas for VMBs.

6.
Analyst ; 138(23): 7070-4, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24102065

RESUMO

The cell-to-cell variation of gold nanoparticle (GNP) uptake is important for therapeutic applications. We directly counted the GNPs in hundreds of individual cells, and showed that the large variation from cell-to-cell could be directly modelled by assuming log-normal distributions of both cell mass and GNP rate of uptake. This was true for GNPs non-specifically bound to fetal bovine serum or conjugated to a cell penetrating peptide. Within a population of cells, GNP content varied naturally by a factor greater than 10 between individual cells.


Assuntos
Ouro/química , Nanopartículas Metálicas , Modelos Biológicos
7.
Analyst ; 138(16): 4649-55, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23775063

RESUMO

Imaging and analyzing gunshot residue (GSR) particles using the scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDS) is a standard technique that can provide important forensic evidence, but the discrimination power of this technique is limited due to low sensitivity to trace elements and difficulties in obtaining quantitative results from small particles. A new, faster method using a scanning proton microbeam and Particle Induced X-ray Emission (µ-PIXE), together with Elastic Backscattering Spectrometry (EBS) is presented for the non-destructive, quantitative analysis of the elemental composition of single GSR particles. In this study, the GSR particles were all Pb, Ba, Sb. The precision of the method is assessed. The grouping behaviour of different makes of ammunition is determined using multivariate analysis. The protocol correctly groups the cartridges studied here, with a confidence >99%, irrespective of the firearm or population of particles selected.


Assuntos
Armas de Fogo , Medicina Legal/métodos , Espectrometria por Raios X/métodos , Ferimentos por Arma de Fogo , Medicina Legal/normas , Humanos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Varredura/normas , Espectrometria por Raios X/normas
8.
Radiat Res ; 200(6): 509-522, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014593

RESUMO

The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models. In this work we use a standard format for reporting DNA damage to evaluate combinations of different, independently developed, models. We demonstrate the capacity of such inter-comparison to determine the sensitivity of models to both known and implicit assumptions. Specifically, we report on the impact of differences in assumptions regarding patterns of DNA damage induction on predicted initial DSB yield, and the subsequent effects this has on derived DNA repair models. The observed differences highlight the importance of considering initial DNA damage on the scale of nanometres rather than micrometres. We show that the differences in DNA damage models result in subsequent repair models assuming significantly different rates of random DSB end diffusion to compensate. This in turn leads to disagreement on the mechanisms responsible for different biological endpoints, particularly when different damage and repair models are combined, demonstrating the importance of inter-model comparisons to explore underlying model assumptions.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Dano ao DNA , Quebras de DNA de Cadeia Dupla , Simulação por Computador
9.
Int J Radiat Oncol Biol Phys ; 116(4): 916-926, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642109

RESUMO

PURPOSE: In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. METHODS AND MATERIALS: We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. RESULTS: Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. CONCLUSIONS: These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties.


Assuntos
Terapia com Prótons , Prótons , Humanos , Eficiência Biológica Relativa , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Transferência Linear de Energia , Método de Monte Carlo
10.
Anal Chem ; 84(9): 4083-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22462501

RESUMO

A new protocol using time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been developed to identify the deposition order of a fingerprint overlapping an ink line on paper. By taking line scans of fragment ions characteristic of the ink molecules (m/z 358.2 and 372.2) where the fingerprint and ink overlap and by calculating the normalized standard deviation of the intensity variation across the line scan, it is possible to determine whether or not a fingerprint is above ink on a paper substrate. The protocol adopted works for a selection of fingerprints from four donors tested here and for a fingerprint that was aged for six months; for one donor, the very faint fingerprints could not be visualized using either standard procedures (ninhydrin development) or SIMS, and therefore the protocol correctly gives an inconclusive result.


Assuntos
Dermatoglifia , Tinta , Espectrometria de Massa de Íon Secundário/métodos , Humanos , Papel , Sensibilidade e Especificidade
11.
Sci Rep ; 12(1): 6826, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474242

RESUMO

Preclinical radiation research lacks standardized dosimetry procedures that provide traceability to a primary standard. Consequently, ensuring accuracy and reproducibility between studies is challenging. Using 3D printed murine phantoms we undertook a dosimetry audit of Xstrahl Small Animal Radiation Research Platforms (SARRPs) installed at 7 UK centres. The geometrically realistic phantom accommodated alanine pellets and Gafchromic EBT3 film for simultaneous measurement of the dose delivered and the dose distribution within a 2D plane, respectively. Two irradiation scenarios were developed: (1) a 10 × 10 mm2 static field targeting the pelvis, and (2) a 5 × 5 mm2 90° arc targeting the brain. For static fields, the absolute difference between the planned dose and alanine measurement across all centres was 4.1 ± 4.3% (mean ± standard deviation), with an overall range of - 2.3 to 10.5%. For arc fields, the difference was - 1.2% ± 6.1%, with a range of - 13.1 to 7.7%. EBT3 dose measurements were greater than alanine by 2.0 ± 2.5% and 3.5 ± 6.0% (mean ± standard deviation) for the static and arc fields, respectively. 2D dose distributions showed discrepancies to the planned dose at the field edges. The audit demonstrates that further work on preclinical radiotherapy quality assurance processes is merited.


Assuntos
Impressão Tridimensional , Radiometria , Alanina , Animais , Camundongos , Imagens de Fantasmas , Radiometria/métodos , Reprodutibilidade dos Testes
12.
Commun Biol ; 5(1): 700, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835982

RESUMO

Immunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images. Simulations of the DSB distributions were generated using Monte Carlo track-structure simulation. For each DSB distribution, a corresponding DNA repair process was modelled and the un-repaired DSBs were recorded at several time points. Corresponding microscopy images for both a DSB and (γ-H2AX) fluorescent marker were generated and compared for different microscopes, radiation types and doses. Statistically significant differences in miscounting were found across most of the tested scenarios. These inconsistencies were propagated through to repair kinetics where there was a perceived change between radiation-types. These changes did not reflect the underlying repair rate and were caused by inconsistencies in foci counting. We conclude that these underlying uncertainties must be considered when analysing images of DNA damage markers to ensure differences observed are real and are not caused by non-systematic miscounting.


Assuntos
Reparo do DNA
13.
Br J Radiol ; 95(1133): 20211175, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35220723

RESUMO

OBJECTIVES: High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS: Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS: The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS: The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE: Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.


Assuntos
Segunda Neoplasia Primária , Terapia com Prótons , Terapia por Raios X , Humanos , Segunda Neoplasia Primária/radioterapia
14.
Phys Med Biol ; 65(10): 10NT02, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32182592

RESUMO

The lack of rigorous quality standards in pre-clinical radiation dosimetry has renewed interest in the development of anthropomorphic phantoms. Using 3D printing customisable phantoms can be created to assess all parts of pre-clinical radiation research: planning, image guidance and treatment delivery. We present the full methodology, including material development and printing designs, for the production of a high spatial resolution, anatomically realistic heterogeneous small animal phantom. A methodology for creating and validating tissue equivalent materials is presented. The technique is demonstrated through the development of a bone-equivalent material. This material is used together with a soft-tissue mimicking ABS plastic filament to reproduce the corresponding structure geometries captured from a CT scan of a nude mouse. Air gaps are used to represent the lungs. Phantom validation was performed through comparison of the geometry and x-ray attenuation of CT images of the phantom and animal images. A 6.6% difference in the attenuation of the bone-equivalent material compared to the reference standard in softer beams (0.5 mm Cu HVL) rapidly decreases as the beam is hardened. CT imaging shows accurate (sub-millimetre) reproduction of the skeleton (Distance-To-Agreement 0.5 mm ± 0.4 mm) and body surface (0.7 mm ± 0.5 mm). Histograms of the voxel intensity profile of the phantom demonstrate suitable similarity to those of both the original mouse image and that of a different animal. We present an approach for the efficient production of an anthropomorphic phantom suitable for the quality assurance of pre-clinical radiotherapy. Our design and full methodology are provided as open source to encourage the pre-clinical radiobiology community to adopt a common QA standard.


Assuntos
Osso e Ossos/diagnóstico por imagem , Imagens de Fantasmas , Plásticos , Impressão Tridimensional , Radiometria/instrumentação , Temperatura , Animais , Camundongos , Tomografia Computadorizada por Raios X
15.
DNA Repair (Amst) ; 85: 102743, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759308

RESUMO

After radiation exposure, one of the critical processes for cellular survival is the repair of DNA double strand breaks. The pathways involved in this response are complex in nature and involve many individual steps that act across different time scales, all of which combine to produce an overall behaviour. It is therefore experimentally challenging to unambiguously determine the mechanisms involved and how they interact whilst maintaining strict control of all confounding variables. In silico methods can provide further insight into results produced by focused experimental investigations through testing of the hypotheses generated. Such computational testing can asses competing hypotheses by investigating their effects across all time scales concurrently, highlighting areas where further experimental work can have the most significance. We describe the construction of a mechanistic model by combination of several hypothesised mechanisms reported in the literature and supported by experiment. Compatibility of these mechanisms was tested by fitting simulation to results reported in the literature. To avoid over-fitting, we used an approach of sequentially testing individual mechanisms within this pathway. We demonstrate that using this approach the model is capable of reproducing published protein kinetics and overall repair trends. This provides evidence supporting the feasibility of the proposed mechanisms and revealed how they interact to produce an overall behaviour. Furthermore, we show that the assumed motion of individual double strand break ends plays a crucial role in determining overall system behaviour.


Assuntos
Biologia Computacional/métodos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Animais , Simulação por Computador , DNA/efeitos da radiação , Estudos de Viabilidade , Humanos , Modelos Genéticos
16.
Br J Radiol ; 93(1107): 20190873, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31860337

RESUMO

The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit.The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.


Assuntos
Institutos de Câncer/estatística & dados numéricos , Terapia com Prótons/estatística & dados numéricos , Medicina Estatal/estatística & dados numéricos , Adolescente , Adulto , Institutos de Câncer/provisão & distribuição , Fortalecimento Institucional , Criança , Ensaios Clínicos como Assunto , Terapia Combinada/métodos , Dano ao DNA , Inglaterra , Humanos , Modelos Teóricos , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Avaliação de Programas e Projetos de Saúde , Terapia com Prótons/efeitos adversos , Radioterapia (Especialidade)/educação , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Pesquisa , Pesquisa Translacional Biomédica , Resultado do Tratamento , Incerteza , Adulto Jovem
17.
Radiother Oncol ; 147: 153-161, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32445860

RESUMO

BACKGROUND AND PURPOSE: Assessment of dosimetric accuracy of radiosurgery on different treatment platforms. MATERIAL AND METHODS: Thirty-three single fraction treatment plans were assessed at thirty centres using an anthropomorphic head phantom with target and brainstem structures. The target being a single irregular shaped target, ~8 cc, 10 mm from the brainstem. The phantom was "immobilised", scanned, planned and treated following the local protocols. EBT-XD films and alanine pellets were used to measure absolute dose, inside both the target and the brainstem, and compared with TPS predicted dose distributions. RESULTS: PTV alanine measurements from gantry-based linacs showed a median percentage difference to the TPS of 0.65%. Cyberknife (CK) had the highest median difference of 2.3% in comparison to the other platforms. GammaKnife (GK) showed the smallest median of 0.3%. Similar trends were observed in the OAR with alanine measurements showing median percentage differences of1.1%, 2.0% and 0.4%, for gantry-based linacs, CK and GK respectively. All platforms showed comparable gamma passing rates between axial and sagittal films. CONCLUSIONS: This comparison has highlighted the dosimetric variation between measured and TPS calculated dose for each delivery platform. The results suggest that clinically acceptable agreement with the predicted dose distributions is achievable by all treatment delivery systems.


Assuntos
Radiocirurgia , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
18.
Sci Rep ; 9(1): 18820, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827167

RESUMO

A new technique for range verification in proton beam therapy has been developed. It is based on the detection of the prompt γ rays that are emitted naturally during the delivery of the treatment. A spectrometer comprising 16 LaBr3(Ce) detectors in a symmetrical configuration is employed to record the prompt γ rays emitted along the proton path. An algorithm has been developed that takes as inputs the LaBr3(Ce) detector signals and reconstructs the maximum γ-ray intensity peak position, in full 3 dimensions. For a spectrometer radius of 8 cm, which could accommodate a paediatric head and neck case, the prompt γ-ray origin can be determined from the width of the detected peak with a σ of 4.17 mm for a 180 MeV proton beam impinging a water phantom. For spectrometer radii of 15 and 25 cm to accommodate larger volumes this value increases to 5.65 and 6.36 mm. For a 8 cm radius, with a 5 and 10 mm undershoot, the σ is 4.31 and 5.47 mm. These uncertainties are comparable to the range uncertainties incorporated in treatment planning. This work represents the first step towards a new accurate, real-time, 3D range verification device for spot-scanning proton beam therapy.

19.
Cancers (Basel) ; 11(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557908

RESUMO

An increased rate of cellular proliferation is a hallmark of cancer and may be accompanied by an increase in ribosome biogenesis and dysregulation in rRNA synthesis. In this regard, CX-5461 has been developed as a novel RNA polymerase I inhibitor and is currently in Phase I/II clinical trials for solid and hematological malignancies. In the present study, interactions between CX-5461 and single-dose X-ray exposure were assessed using isobologram analysis using MTS assay and drug-induced cell death was assessed using flow cytometric, confocal microscopy and Western blot analysis. Combination treatments involving CX-5461 and single-dose X-ray exposure highlighted increased effectiveness compared to individual treatment alone in the CaSki cervical cancer line, with marked synergistic interaction occurring within the low-drug (50 nM) and low-dose radiation range (2-6 Gy). Cell lines challenged with CX-5461 demonstrated the presence of DNA damage, induction of apoptosis, autophagy and senescence alongside high percentages of G2/M cell cycle arrest. In addition, we report preferential sensitivity of ovarian cancer cells with BRCA2 mutation to this novel agent. Taken together, CX-5461 displayed a broad spectrum of activity in a panel of solid cancer cell lines with IC50 values ranging from 35 nM to >1 µM. The work described herein identifies the synergistic effects of CX-5461 in combination with X-rays in solid cancers and may also aid in the design of clinical trials involving this novel agent.

20.
Radiat Oncol ; 14(1): 134, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366364

RESUMO

Preclinical radiotherapy studies using small animals are an indispensable step in the pathway from in vitro experiments to clinical implementation. As radiotherapy techniques advance in the clinic, it is important that preclinical models evolve to keep in line with these developments. The use of orthotopic tumour sites, the development of tissue-equivalent mice phantoms and the recent introduction of image-guided small animal radiation research platforms has enabled similar precision treatments to be delivered in the laboratory.These technological developments, however, are hindered by a lack of corresponding dosimetry standards and poor reporting of methodologies. Without robust and well documented preclinical radiotherapy quality assurance processes, it is not possible to ensure the accuracy and repeatability of dose measurements between laboratories. As a consequence current RT-based preclinical models are at risk of becoming irrelevant.In this review we explore current standardization initiatives, focusing in particular on recent developments in small animal irradiation equipment, 3D printing technology to create customisable tissue-equivalent dosimetry phantoms and combining these phantoms with commonly used detectors.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Animais , Desenho de Equipamento , Humanos , Camundongos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA