Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 297(3): 101005, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314685

RESUMO

Barth syndrome (BTHS) is an X-linked disorder of mitochondrial phospholipid metabolism caused by pathogenic variants in TAFFAZIN, which results in abnormal cardiolipin (CL) content in the inner mitochondrial membrane. To identify unappreciated pathways of mitochondrial dysfunction in BTHS, we utilized an unbiased proteomics strategy and identified that complex I (CI) of the mitochondrial respiratory chain and the mitochondrial quality control protease presenilin-associated rhomboid-like protein (PARL) are altered in a new HEK293-based tafazzin-deficiency model. Follow-up studies confirmed decreased steady state levels of specific CI subunits and an assembly factor in the absence of tafazzin; this decrease is in part based on decreased transcription and results in reduced CI assembly and function. PARL, a rhomboid protease associated with the inner mitochondrial membrane with a role in the mitochondrial response to stress, such as mitochondrial membrane depolarization, is increased in tafazzin-deficient cells. The increased abundance of PARL correlates with augmented processing of a downstream target, phosphoglycerate mutase 5, at baseline and in response to mitochondrial depolarization. To clarify the relationship between abnormal CL content, CI levels, and increased PARL expression that occurs when tafazzin is missing, we used blue-native PAGE and gene expression analysis to determine that these defects are remediated by SS-31 and bromoenol lactone, pharmacologic agents that bind CL or inhibit CL deacylation, respectively. These findings have the potential to enhance our understanding of the cardiac pathology of BTHS, where defective mitochondrial quality control and CI dysfunction have well-recognized roles in the pathology of diverse forms of cardiac dysfunction.


Assuntos
Aciltransferases/genética , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Aciltransferases/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Células HEK293 , Humanos , Lipidômica , Proteômica
2.
Biotechnol Bioeng ; 119(3): 807-819, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34786689

RESUMO

Chinese hamster ovary (CHO) cell lines are grown in cultures with varying asparagine and glutamine concentrations, but further study is needed to characterize the interplay between these amino acids. By following 13 C-glucose, 13 C-glutamine, and 13 C-asparagine tracers using metabolic flux analysis (MFA), CHO cell metabolism was characterized in an industrially relevant fed-batch process under glutamine supplemented and low glutamine conditions during early and late exponential growth. For both conditions MFA revealed glucose as the primary carbon source to the tricarboxylic acid (TCA) cycle followed by glutamine and asparagine as secondary sources. Early exponential phase CHO cells prefer glutamine over asparagine to support the TCA cycle under the glutamine supplemented condition, while asparagine was critical for TCA activity for the low glutamine condition. Overall TCA fluxes were similar for both conditions due to the trade-offs associated with reliance on glutamine and/or asparagine. However, glutamine supplementation increased fluxes to alanine, lactate and enrichment of glutathione, N-acetyl-glucosamine and pyrimidine-containing-molecules. The late exponential phase exhibited reduced central carbon metabolism dominated by glucose, while lactate reincorporation and aspartate uptake were preferred over glutamine and asparagine. These 13 C studies demonstrate that metabolic flux is process time dependent and can be modulated by varying feed composition.


Assuntos
Asparagina , Glutamina , Animais , Asparagina/metabolismo , Células CHO , Cricetinae , Cricetulus , Glucose/metabolismo , Glutamina/metabolismo , Ácido Láctico
3.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L639-L652, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461316

RESUMO

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by progressive right ventricle (RV) failure due to elevated pulmonary artery pressures (PAP). In PAH, histologically complex vaso-occlusive lesions in the pulmonary vasculature contribute to elevated PAP. However, the mechanisms underlying dysfunction of the microvascular endothelial cells (MVECs) that comprise a significant portion of these lesions are not well understood. We recently showed that MVECs isolated from the Sugen/hypoxia (SuHx) rat experimental model of PAH (SuHx-MVECs) exhibit increases in migration/proliferation, mitochondrial reactive oxygen species (ROS; mtROS) production, intracellular calcium levels ([Ca2+]i), and mitochondrial fragmentation. Furthermore, quenching mtROS with the targeted antioxidant MitoQ attenuated basal [Ca2+]i, migration and proliferation; however, whether increased mtROS-induced [Ca2+]i entry affected mitochondrial morphology was not clear. In this study, we sought to better understand the relationship between increased ROS, [Ca2+]i, and mitochondrial morphology in SuHx-MVECs. We measured changes in mitochondrial morphology at baseline and following inhibition of mtROS, with the targeted antioxidant MitoQ, or transient receptor potential vanilloid-4 (TRPV4) channels, which we previously showed were responsible for mtROS-induced increases in [Ca2+]i in SuHx-MVECs. Quenching mtROS or inhibiting TRPV4 attenuated fragmentation in SuHx-MVECs. Conversely, inducing mtROS production in MVECs from normoxic rats (N-MVECs) increased fragmentation. Ca2+ entry induced by the TRPV4 agonist GSK1017920A was significantly increased in SuHx-MVECs and was attenuated with MitoQ treatment, indicating that mtROS contributes to increased TRPV4 activity in SuHx-MVECs. Basal and maximal respiration were depressed in SuHx-MVECs, and inhibiting mtROS, but not TRPV4, improved respiration in these cells. Collectively, our data show that, in SuHx-MVECs, mtROS production promotes TRPV4-mediated increases in [Ca2+]i, mitochondrial fission, and decreased mitochondrial respiration. These results suggest an important role for mtROS in driving MVEC dysfunction in PAH.


Assuntos
Células Endoteliais/patologia , Hipóxia/complicações , Indóis/toxicidade , Pulmão/patologia , Mitocôndrias/patologia , Hipertensão Arterial Pulmonar/patologia , Pirróis/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Inibidores da Angiogênese/toxicidade , Animais , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Pulmão/metabolismo , Masculino , Mitocôndrias/metabolismo , Consumo de Oxigênio , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Ratos Wistar , Remodelação Vascular
4.
Biotechnol Bioeng ; 114(12): 2848-2856, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28926673

RESUMO

One of the key quality attributes of monoclonal antibodies is the glycan pattern and distribution. Two terminal galactose residues typically represent a small fraction of the total glycans from antibodies. However, antibodies with defined glycosylation properties including enhanced galactosylation have been shown to exhibit altered properties for these important biomedical modalities. In this study, the disruption of two α-2,3 sialyltransferases (ST3GAL4 and ST3GAL6) from Chinese Hamster Ovary (CHO) cells was combined with protein engineering of the Fc region to generate an IgG containing 80% bigalactosylated and fucosylated (G2F) glycoforms. Expression of the same single amino acid mutant (F241A) IgG in CHO cells with a triple gene knockout of fucosyltransferase (FUT8) plus ST3GAL4 and ST3GAL6 lowered the galactosylation glycoprofile to 65% bigalactosylated G2 glycans. However, overexpression of IgGs with four amino acid substitutions recovered the G2 glycoform composition approximately 80%. Combining genome and protein engineering in CHO cells will provide a new antibody production platform that enables biotechnologists to generate glycoforms standards for specific biomedical and biotechnology applications.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Técnicas de Química Combinatória/métodos , Galactose/metabolismo , Imunoglobulina G/metabolismo , Engenharia de Proteínas/métodos , Animais , Células CHO , Mapeamento Cromossômico/métodos , Cricetulus , Melhoramento Genético/métodos , Glicosilação , Imunoglobulina G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA