Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Endocr J ; 61(1): 85-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24140652

RESUMO

The pancreas is critical for maintaining glucose homeostasis. Activating transcription factor 3 (ATF3) is an adaptive response transcription factor. There are major discrepancies in previous reports on pancreatic ATF3; therefore, its role in the pancreas is unclear. To better elucidate the role of ATF3 in the pancreas, we conducted in vitro studies using pancreatic α and ß cell lines, and also evaluated the use of ATF3 antibodies for immunohistochemistry. We determined ATF3 expression was increased by low glucose and decreased by high glucose in both αTC-1.6 and ßTC3 cells. We also showed that adenovirus-mediated ATF3 overexpression increased glucagon promoter activity and glucagon mRNA levels in αTC-1.6 cells; whereas, it had no effect on insulin promoter activity and insulin mRNA levels in ßTC3 cells. Although immunostaining with the C-19 ATF3 antibody demonstrated predominant expression in α cells rather than ß cells, ATF3 staining was still detected in ATF3 knockout mice as clearly as in control mice. On the other hand, another ATF3 antibody (H-90) detected ATF3 in both α cells and ß cells, and was clearly diminished in ATF3 knockout mice. These results indicate that previous discrepancies in ATF3 expression patterns in the pancreas were caused by the varying specificities of the ATF3 antibodies used, and that ATF3 is actually expressed in both α cells and ß cells.


Assuntos
Fator 3 Ativador da Transcrição/genética , Expressão Gênica/efeitos dos fármacos , Glucagon/genética , Glucose/administração & dosagem , Insulina/genética , Ilhotas Pancreáticas/metabolismo , Fator 3 Ativador da Transcrição/análise , Animais , Linhagem Celular , Células Secretoras de Glucagon/química , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise
2.
Biochem Biophys Res Commun ; 442(1-2): 92-8, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24246675

RESUMO

OBJECTIVE: Nicotinamide rescues ß-cell damage and diabetes in rodents, but a large-scale clinical trial failed to show the benefit of nicotinamide in the prevention of type 1 diabetes. Recent studies have shown that Sirt1 deacetylase, a putative protector of ß-cells, is inhibited by nicotinamide. We investigated the effects of isonicotinamide, which is a derivative of nicotinamide and does not inhibit Sirt1, on streptozotocin (STZ)-induced diabetes in mice. RESEARCH DESIGN AND METHODS: Male C57BL/6 mice were administered with three different doses of STZ (65, 75, and 100 mg/kg BW) alone or in combination with subsequent high-fat feeding. The mice were treated with isonicotinamide (250 mg/kg BW/day) or phosphate-buffered saline for 10 days. The effects of isonicotinamide on STZ-induced diabetes were assessed by blood glucose levels, glucose tolerance test, and immunohistochemistry. RESULTS: Isonicotinamide effectively prevented hyperglycemia induced by higher doses of STZ (75 and 100mg/kg BW) alone and low-dose STZ (65 mg/kg BW) followed by 6-week high-fat diet in mice. The protective effects of isonicotinamide were associated with decreased apoptosis of ß-cells and reductions in both insulin content and insulin-positive area in the pancreas of STZ-administered mice. In addition, isonicotinamide inhibited STZ-induced apoptosis in cultured isolated islets. CONCLUSIONS: These data clearly demonstrate that isonicotinamide exerts anti-diabetogenic effects by preventing ß-cell damage after STZ administration. These findings warrant further investigations on the protective effects of isonicotinamide and related compounds against ß-cell damage in diabetes.


Assuntos
Citoproteção , Diabetes Mellitus Experimental/prevenção & controle , Hipoglicemiantes/administração & dosagem , Células Secretoras de Insulina/efeitos dos fármacos , Niacinamida/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 1/antagonistas & inibidores , Estreptozocina/administração & dosagem
3.
Nat Med ; 12(5): 534-40, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16604086

RESUMO

Leptin controls food intake by regulating the transcription of key neuropeptides in the hypothalamus. The mechanism by which leptin regulates gene expression is unclear, however. Here we show that delivery of adenovirus encoding a constitutively nuclear mutant FoxO1, a transcription factor known to control liver metabolism and pancreatic beta-cell function, to the hypothalamic arcuate nucleus of rodents results in a loss of the ability of leptin to curtail food intake and suppress expression of Agrp. Conversely, a transactivation-deficient FoxO1 mutant prevents induction of Agrp by fasting. We also find that FoxO1 and the transcription factor Stat3 exert opposing actions on the expression of Agrp and Pomc through transcriptional squelching. FoxO1 promotes opposite patterns of coactivator-corepressor exchange at the Pomc and Agrp promoters, resulting in activation of Agrp and inhibition of Pomc. Thus, FoxO1 represents a shared component of pathways integrating food intake and peripheral metabolism.


Assuntos
Ingestão de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Leptina/metabolismo , Proteínas/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Proteína Relacionada com Agouti , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Células Cultivadas , Jejum , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Técnicas de Transferência de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Regiões Promotoras Genéticas , Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Am J Physiol Endocrinol Metab ; 302(5): E603-13, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22215655

RESUMO

Diabetes is characterized by an absolute or relative deficiency of pancreatic ß-cells. New strategies to accelerate ß-cell neogenesis or maintain existing ß-cells are desired for future therapies against diabetes. We previously reported that forkhead box O1 (FoxO1) inhibits ß-cell growth through a Pdx1-mediated mechanism. However, we also reported that FoxO1 protects against ß-cell failure via the induction of NeuroD and MafA. Here, we investigate the physiological roles of FoxO1 in the pancreas by generating the mice with deletion of FoxO1 in the domains of the Pdx1 promoter (P-FoxO1-KO) or the insulin 2 promoter (ß-FoxO1-KO) and analyzing the metabolic parameters and pancreatic morphology under two different conditions of increased metabolic demand: high-fat high-sucrose diet (HFHSD) and db/db background. P-FoxO1-KO, but not ß-FoxO1-KO, showed improved glucose tolerance with HFHSD. Immunohistochemical analysis revealed that P-FoxO1-KO had increased ß-cell mass due to increased islet number rather than islet size, indicating accelerated ß-cell neogenesis. Furthermore, insulin-positive pancreatic duct cells were increased in P-FoxO1-KO but not ß-FoxO1-KO. In contrast, db/db mice crossed with P-FoxO1-KO or ß-FoxO1-KO showed more severe glucose intolerance than control db/db mice due to decreased glucose-responsive insulin secretion. Electron microscope analysis revealed fewer insulin granules in FoxO1 knockout db/db mice. We conclude that FoxO1 functions as a double-edged sword in the pancreas; FoxO1 essentially inhibits ß-cell neogenesis from pancreatic duct cells but is required for the maintenance of insulin secretion under metabolic stress.


Assuntos
Complicações do Diabetes/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/fisiologia , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Animais , Contagem de Células , Diferenciação Celular , Cruzamentos Genéticos , Complicações do Diabetes/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Intolerância à Glucose/complicações , Intolerância à Glucose/etiologia , Intolerância à Glucose/prevenção & controle , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/ultraestrutura , Camundongos , Camundongos Knockout , Camundongos Mutantes , Obesidade/complicações , Obesidade/patologia , Pâncreas/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , RNA Mensageiro/metabolismo , Ratos
5.
Cell Metab ; 2(3): 153-63, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16154098

RESUMO

Diabetes causes pancreatic beta cell failure through hyperglycemia-induced oxidative stress, or "glucose toxicity." We show that the forkhead protein FoxO1 protects beta cells against oxidative stress by forming a complex with the promyelocytic leukemia protein Pml and the NAD-dependent deacetylase Sirt1 to activate expression of NeuroD and MafA, two Insulin2 (Ins2) gene transcription factors. Using acetylation-defective and acetylation-mimicking mutants, we demonstrate that acetylation targets FoxO1 to Pml and prevents ubiquitin-dependent degradation. We show that hyperglycemia suppresses MafA expression in vivo and that MafA inhibition can be prevented by transgenic expression of constitutively nuclear FoxO1 in beta cells. The findings provide a mechanism linking glucose- and growth factor receptor-activated pathways to protect beta cells against oxidative damage via FoxO proteins.


Assuntos
Regulação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Adenoviridae/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Diabetes Mellitus Tipo 2/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fluoresceína-5-Isotiocianato , Imunofluorescência , Corantes Fluorescentes , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Luciferases/metabolismo , Fatores de Transcrição Maf Maior , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Mutação Puntual , Regiões Promotoras Genéticas , Proteína da Leucemia Promielocítica , RNA Mensageiro/metabolismo , Sirtuína 1 , Sirtuínas/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , beta-Galactosidase/metabolismo
6.
J Clin Invest ; 117(11): 3369-82, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17948123

RESUMO

The Notch family of cell surface receptors and its ligands are highly conserved proteins that regulate cell fate determination, including those involved in mammalian vascular development. We report that Notch induces VEGFR-3 expression in vitro in human endothelial cells and in vivo in mice. In vitro, Notch in complex with the DNA-binding protein CBF-1/suppressor of hairless/Lag1 (CSL) bound the VEGFR-3 promoter and transactivated VEGFR-3 specifically in endothelial cells. Through induction of VEGFR-3, Notch increased endothelial cell responsiveness to VEGF-C, promoting endothelial cell survival and morphological changes. In vivo, VEGFR-3 was upregulated in endothelial cells with active Notch signaling. Mice heterozygous for null alleles of both Notch1 and VEGFR-3 had significantly reduced viability and displayed midgestational vascular patterning defects analogous to Notch1 nullizygous embryos. We found that Notch1 and Notch4 were expressed in normal and tumor lymphatic endothelial cells and that Notch1 was activated in lymphatic endothelium of invasive mammary micropapillary carcinomas. These results demonstrate that Notch1 and VEGFR-3 interact genetically, that Notch directly induces VEGFR-3 in blood endothelial cells to regulate vascular development, and that Notch may function in tumor lymphangiogenesis.


Assuntos
Células Endoteliais/metabolismo , Receptores Notch/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Forma Celular , Sobrevivência Celular , Células Cultivadas , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Células Endoteliais/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Receptores Notch/genética , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
7.
J Clin Invest ; 117(9): 2477-85, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17717603

RESUMO

Forkhead box O (Foxo) transcription factors govern metabolism and cellular differentiation. Unlike Foxo-dependent metabolic pathways and target genes, the mechanisms by which these proteins regulate differentiation have not been explored. Activation of Notch signaling mimics the effects of Foxo gain of function on cellular differentiation. Using muscle differentiation as a model system, we show that Foxo physically and functionally interacts with Notch by promoting corepressor clearance from the Notch effector Csl, leading to activation of Notch target genes. Inhibition of myoblast differentiation by constitutively active Foxo1 is partly rescued by inhibition of Notch signaling while Foxo1 loss of function precludes Notch inhibition of myogenesis and increases myogenic determination gene (MyoD) expression. Accordingly, conditional Foxo1 ablation in skeletal muscle results in increased formation of MyoD-containing (fast-twitch) muscle fibers and altered fiber type distribution at the expense of myogenin-containing (slow-twitch) fibers. Notch/Foxo1 cooperation may integrate environmental cues through Notch with metabolic cues through Foxo1 to regulate progenitor cell maintenance and differentiation.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
9.
Dev Cell ; 4(1): 119-29, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12530968

RESUMO

An outstanding question in adipocyte biology is how hormonal cues are relayed to the nucleus to activate the transcriptional program that promotes adipogenesis. The forkhead transcription factor Foxo1 is regulated by insulin via Akt-dependent phosphorylation and nuclear exclusion. We show that Foxo1 is induced in the early stages of adipocyte differentiation but that its activation is delayed until the end of the clonal expansion phase. Constitutively active Foxo1 prevents the differentiation of preadipocytes, while dominant-negative Foxo1 restores adipocyte differentiation of fibroblasts from insulin receptor-deficient mice. Further, Foxo1 haploinsufficiency protects from diet-induced diabetes in mice. We propose that Foxo1 plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes adipocyte differentiation.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular , Fatores de Transcrição/metabolismo , Células 3T3 , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Tamanho Celular , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Fibroblastos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Resistência à Insulina , Camundongos , Mutação/genética , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Transcrição/genética
10.
J Clin Invest ; 113(2): 209-19, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14722613

RESUMO

Insulin promotes both metabolism and growth. However, it is unclear whether insulin-dependent growth is merely a result of its metabolic actions. Targeted ablation of insulin receptor (Insr) has not clarified this issue, because of early postnatal lethality. To examine this question, we generated mice with variable cellular mosaicism for null Insr alleles. Insr ablation in approximately 80% of cells caused extreme growth retardation, lipoatrophy, and hypoglycemia, a clinical constellation that resembles the human syndrome of leprechaunism. Insr ablation in 98% of cells, while resulting in similar growth retardation and lipoatrophy, caused diabetes without beta-cell hyperplasia. The growth retardation was associated with a greater than 60-fold increase in the expression of hepatic insulin-like growth factor binding protein-1. These findings indicate that insulin regulates growth independently of metabolism and that the number of insulin receptors is an important determinant of the specificity of insulin action.


Assuntos
Receptor de Insulina/genética , Tecido Adiposo/metabolismo , Alelos , Animais , Northern Blotting , Western Blotting , Divisão Celular , Genótipo , Hiperplasia , Hipoglicemia/genética , Imuno-Histoquímica , Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Ligantes , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Mosaicismo , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
11.
J Clin Invest ; 110(12): 1839-47, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12488434

RESUMO

Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing beta cells. The mechanisms governing replication of terminally differentiated beta cells and neogenesis from progenitor cells are unclear. Mice lacking insulin receptor substrate-2 (Irs2) develop beta cell failure, suggesting that insulin signaling is required to maintain an adequate beta cell mass. We report that haploinsufficiency for the forkhead transcription factor Foxo1 reverses beta cell failure in Irs2(-/-) mice through partial restoration of beta cell proliferation and increased expression of the pancreatic transcription factor pancreas/duodenum homeobox gene-1 (Pdx1). Foxo1 and Pdx1 exhibit mutually exclusive patterns of nuclear localization in beta cells, and constitutive nuclear expression of a mutant Foxo1 is associated with lack of Pdx1 expression. We show that Foxo1 acts as a repressor of Foxa2-dependent (Hnf-3beta-dependent) expression from the Pdx1 promoter. We propose that insulin/IGFs regulate beta cell proliferation by relieving Foxo1 inhibition of Pdx1 expression in a subset of cells embedded within pancreatic ducts.


Assuntos
Proteínas de Homeodomínio , Insulina/metabolismo , Ilhotas Pancreáticas/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Genes Reporter , Humanos , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/citologia , Rim/citologia , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Pâncreas/citologia , Pâncreas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transativadores/genética , Fatores de Transcrição/genética
13.
Endocrinology ; 153(2): 659-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22186407

RESUMO

Recent studies have revealed that insulin signaling in pancreatic ß-cells and the hypothalamus is critical for maintaining nutrient and energy homeostasis, the failure of which are hallmarks of metabolic syndrome. We previously reported that forkhead transcription factor forkhead box-containing protein of the O subfamily (FoxO)1, a downstream effector of insulin signaling, plays important roles in ß-cells and the hypothalamus when we investigated the roles of FoxO1 independently in the pancreas and hypothalamus. However, because metabolic syndrome is caused by the combined disorders in hypothalamus and pancreas, to elucidate the combined implications of FoxO1 in these organs, we generated constitutively active FoxO1 knockin (KI) mice with specific activation in both the hypothalamus and pancreas. The KI mice developed obesity, insulin resistance, glucose intolerance, and hypertriglyceridemia due to increased food intake, decreased energy expenditure, and impaired insulin secretion, which characterize metabolic syndrome. The KI mice also had increased hypothalamic Agouti-related protein and neuropeptide Y levels and decreased uncoupling protein 1 and peroxisome proliferator-activated receptor γ coactivator 1α levels in adipose tissue and skeletal muscle. Impaired insulin secretion was associated with decreased expression of pancreatic and duodenum homeobox 1 (Pdx1), muscyloaponeurotic fibrosarcoma oncogene homolog A (MafA), and neurogenic differentiation 1 (NeuroD) in islets, although ß-cell mass was paradoxically increased in KI mice. Based on these results, we propose that uncontrolled FoxO1 activation in the hypothalamus and pancreas accounts for the development of obesity and glucose intolerance, hallmarks of metabolic syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/fisiologia , Intolerância à Glucose/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Animais , Proliferação de Células , Ingestão de Alimentos , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Intolerância à Glucose/genética , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Camundongos , Obesidade/genética , Consumo de Oxigênio , Fatores de Tempo
14.
PLoS One ; 7(2): e32249, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384192

RESUMO

Genetic studies revealed that the ablation of insulin/IGF-1 signaling in the pancreas causes diabetes. FoxO1 is a downstream transcription factor of insulin/IGF-1 signaling. We previously reported that FoxO1 haploinsufficiency restored ß cell mass and rescued diabetes in IRS2 knockout mice. However, it is still unclear whether FoxO1 dysregulation in the pancreas could be the cause of diabetes. To test this hypothesis, we generated transgenic mice overexpressing constitutively active FoxO1 specifically in the pancreas (TG). TG mice had impaired glucose tolerance and some of them indeed developed diabetes due to the reduction of ß cell mass, which is associated with decreased Pdx1 and MafA in ß cells. We also observed increased proliferation of pancreatic duct epithelial cells in TG mice and some mice developed a polycystic pancreas as they aged. Furthermore, TG mice exhibited islet hypervascularities due to increased VEGF-A expression in ß cells. We found FoxO1 binds to the VEGF-A promoter and regulates VEGF-A transcription in ß cells. We propose that dysregulation of FoxO1 activity in the pancreas could account for the development of diabetes and pancreatic cysts.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Intolerância à Glucose/metabolismo , Ilhotas Pancreáticas/patologia , Pâncreas/metabolismo , Animais , Proliferação de Células , Cistos/patologia , Células Epiteliais/citologia , Proteína Forkhead Box O1 , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica/métodos , Ilhotas Pancreáticas/irrigação sanguínea , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Transgênicos , Pancreatopatias/metabolismo , Regiões Promotoras Genéticas , Transativadores/metabolismo , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
PLoS One ; 7(10): e47231, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056614

RESUMO

In liver, glucose utilization and lipid synthesis are inextricably intertwined. When glucose availability exceeds its utilization, lipogenesis increases, leading to increased intrahepatic lipid content and lipoprotein secretion. Although the fate of three-carbon metabolites is largely determined by flux rate through the relevant enzymes, insulin plays a permissive role in this process. But the mechanism integrating insulin receptor signaling to glucose utilization with lipogenesis is unknown. Forkhead box O1 (FoxO1), a downstream effector of insulin signaling, plays a central role in hepatic glucose metabolism through the regulation of hepatic glucose production. In this study, we investigated the mechanism by which FoxO1 integrates hepatic glucose utilization with lipid synthesis. We show that FoxO1 overexpression in hepatocytes reduces activity of carbohydrate response element binding protein (Chrebp), a key regulator of lipogenesis, by suppressing O-linked glycosylation and reducing the protein stability. FoxO1 inhibits high glucose- or O-GlcNAc transferase (OGT)-induced liver-pyruvate kinase (L-PK) promoter activity by decreasing Chrebp recruitment to the L-PK promoter. Conversely, FoxO1 ablation in liver leads to the enhanced O-glycosylation and increased protein level of Chrebp owing to decreased its ubiquitination. We propose that FoxO1 regulation of Chrebp O-glycosylation is a mechanism linking hepatic glucose utilization with lipid synthesis.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Western Blotting , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Glicosilação , Imunoprecipitação , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Estabilidade Proteica , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
16.
Endocrinology ; 151(6): 2556-66, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375183

RESUMO

Silent information regulator (SIR)2 is an nicotinamide adenine dinucleotide dependent deacetylase implicated in the regulation of life span in species as diverse as yeast, worms, and flies. Mammalian Sirt1 is the most closely related homolog of the SIR2 gene. Pharmacological activators of Sirt1 have been reported to increase the life span and improve the health of mice fed a high-fat diet and to reverse diabetes in rodents. Sirt1 links the energy availability status with cellular metabolism in peripheral organs including liver, pancreas, muscle, and white adipose tissue. Insulin and leptin signaling regulate food intake by controlling the expression of orexigenic and anorexigenic neuropeptides in the arcuate nucleus of the hypothalamus via Forkhead box O (Foxo)-1 and signal transducer and activator of transcription-3. Sirt1 has been reported to improve insulin sensitivity in vitro, but the role of hypothalamic Sirt1 in regulating feeding has not been addressed. We found that hypothalamic Sirt1 protein levels increase on feeding, and this induction is abrogated in diet-induced obese mice and db/db mice. We also demonstrate for the first time that Sirt1 protein turnover is regulated by the proteasome and ubiquitination in a hypothalamic cell line and in vivo by feeding, and this regulation is not seen in a pituitary cell line AtT20. Forced expression of wild-type Sirt1 in the mediobasal hypothalamus by adenovirus microinjection suppressed Foxo1-induced hyperphagia, a model for central insulin resistance. Moreover, Sirt1 suppressed Foxo1-dependent expression of the orexigenic neuropeptide Agouti-related peptide in vitro. We propose that on feeding, Sirt1 protein is stabilized in the hypothalamus, leading to decreased Foxo1-dependent expression of orexigenic neuropeptide Agouti-related peptide and cessation of feeding.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Sirtuína 1/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Western Blotting , Linhagem Celular , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hiperfagia/metabolismo , Hiperfagia/fisiopatologia , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética , Aumento de Peso/genética , Aumento de Peso/fisiologia
17.
Mol Cell Biol ; 29(16): 4417-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19506018

RESUMO

An understanding of the mechanisms that govern pancreatic endocrine cell ontogeny may offer strategies for their somatic replacement in diabetic patients. During embryogenesis, transcription factor FoxO1 is expressed in pancreatic progenitor cells. Subsequently, it becomes restricted to beta cells and to a rare population of insulin-negative juxtaductal cells (FoxO1+ Ins(-)). It is unclear whether FoxO1+ Ins(-) cells give rise to endocrine cells. To address this question, we first evaluated FoxO1's role in pancreas development using gain- and loss-of-function alleles in mice. Premature FoxO1 activation in pancreatic progenitors promoted alpha-cell formation but curtailed exocrine development. Conversely, FoxO1 ablation in pancreatic progenitor cells, but not in committed endocrine progenitors or terminally differentiated beta cells, selectively increased juxtaductal beta cells. As these data indicate an involvement of FoxO1 in pancreatic lineage determination, FoxO1+ Ins(-) cells were clonally isolated and assayed for their capacity to undergo endocrine differentiation. Upon FoxO1 activation, FoxO1+ Ins(-) cultures converted into glucagon-producing cells. We conclude that FoxO1+ Ins(-) juxtaductal cells represent a hitherto-unrecognized pancreatic cell population with in vitro capability of endocrine differentiation.


Assuntos
Diferenciação Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Células Secretoras de Insulina/fisiologia , Pâncreas , Animais , Células Cultivadas , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Somatostatina/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
18.
Diabetes ; 58(10): 2344-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19584310

RESUMO

OBJECTIVE: Atherosclerotic cardiovascular disease is the leading cause of death among people with diabetes. Generation of oxidized LDLs and reduced nitric oxide (NO) availability because of endothelial NO synthase (eNOS) dysfunction are critical events in atherosclerotic plaque formation. Biochemical mechanism leading from hyperglycemia to oxLDL formation and eNOS dysfunction is unknown. RESEARCH DESIGN AND METHODS: We show that glucose, acting through oxidative stress, activates the transcription factor Foxo1 in vascular endothelial cells. RESULTS: Foxo1 promotes inducible NOS (iNOS)-dependent NO-peroxynitrite generation, which leads in turn to LDL oxidation and eNOS dysfunction. We demonstrate that Foxo1 gain-of-function mimics the effects of hyperglycemia on this process, whereas conditional Foxo1 knockout in vascular endothelial cells prevents it. CONCLUSIONS: The findings reveal a hitherto unsuspected role of the endothelial iNOS-NO-peroxynitrite pathway in lipid peroxidation and eNOS dysfunction and suggest that Foxo1 activation in response to hyperglycemia brings about proatherogenic changes in vascular endothelial cell function.


Assuntos
Endotélio Vascular/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Hiperglicemia/fisiopatologia , Lipoproteínas LDL/metabolismo , Microcirculação/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Aorta/enzimologia , Glicemia/metabolismo , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/prevenção & controle , Proteínas de Ciclo Celular , Angiopatias Diabéticas/epidemiologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/mortalidade , Angiopatias Diabéticas/prevenção & controle , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hiperglicemia/enzimologia , Hiperglicemia/genética , Resistência à Insulina/fisiologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , Oxirredução , RNA/genética , RNA/isolamento & purificação , Fatores de Risco , Fatores de Transcrição/genética
19.
Endocr J ; 54(4): 507-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17510498

RESUMO

Forkhead transcription factors of the FoxO family have important roles in cellular proliferation, apoptosis, differentiation and stress resistance. FoxO proteins also play important roles in metabolism of complex organisms. FoxO1 regulates glucose and lipid metabolism in liver, as well as preadipocyte, myoblast and vascular endothelial cell differentiation. In the hypothalamus, FoxO controls food intake. In this chapter, we review the role of FoxO in pancreatic beta cells. Pancreatic beta cells secrete insulin to maintain the plasma glucose levels in a strict physiological range. Defects of beta cell function cause diabetes. The expression pattern of FoxO1 during pancreatic organogenesis is similar to that of Pdx1, Nkx2.2 and Pax4, transcription factors known to be critical for beta cell development. FoxO1 is expressed in a subset of pancreatic duct cells, in which insulin and/or Pdx1 are occasionally expressed. FoxO1 inhibits beta cell proliferation through suppression of Pdx1 by competing with FoxA2 and protects against beta cell failure induced by oxidative stress through NeuroD and MafA induction. Thus, a series of FoxO1 studies in pancreas suggested that FoxO1 plays important roles in pancreatic beta cell differentiation, neogenesis, proliferation and stress resistance. Genetic or pharmacological manipulation of FoxO can be used to prevent beta cell failure or aid in the differentiation of uncommitted endocrine progenitors into beta cells for transplantation.


Assuntos
Metabolismo Energético/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Células Secretoras de Insulina/metabolismo , Estresse Oxidativo/fisiologia , Animais , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Células Secretoras de Insulina/citologia , Proteínas Nucleares , Fatores de Transcrição
20.
Physiol Rev ; 84(2): 623-47, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15044684

RESUMO

Insulin resistance plays a key role in the pathogenesis of several human diseases, including diabetes, obesity, hypertension, and cardiovascular diseases. The predisposition to insulin resistance results from genetic and environmental factors. The search for gene variants that predispose to insulin resistance has been thwarted by its genetically heterogeneous pathogenesis. However, using techniques of targeted mutagenesis and transgenesis in rodents, investigators have developed mouse models to test critical hypotheses on the pathogenesis of insulin resistance. Moreover, experimental crosses among mutant mice have shed light onto the polygenic nature of the interactions underlying this complex metabolic condition.


Assuntos
Modelos Animais de Doenças , Resistência à Insulina/fisiologia , Animais , Insulina/fisiologia , Camundongos , Camundongos Knockout , Receptor de Insulina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA