Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dent J (Basel) ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534279

RESUMO

The newly developed mineral carbonated apatite has recently been proposed as a bone graft material for bone regenerative treatment in implant therapy. This case series details the clinical and radiographic outcomes of ridge preservation and ridge augmentation using only carbonated apatite as bone graft material for implant treatment. Twenty patients (36 sites) who required bone regeneration and implant placement were retrospectively assessed. Simultaneous carbonated apatite implant placement was performed using the simultaneous ridge preservation or augmentation approach on 24 sites in 13 patients with sufficient bone quantity for primary stabilization based on preoperative evaluation results. A staged ridge preservation or augmentation approach was used for the remaining 12 sites in seven patients with insufficient bone quantity. The mean regenerated bone height for each treatment method was as follows: simultaneous preservation, 7.4 ± 3.3 mm; simultaneous augmentation, 3.6 ± 2.3 mm; staged preservation, 7.2 ± 4.5 mm; and staged augmentation, 6.1 ± 2.7 mm. The mean regenerated bone width for each treatment method was as follows: simultaneous preservation, 6.5 ± 2.9 mm; simultaneous augmentation, 3.3 ± 2.5 mm; staged preservation, 5.5 ± 1.7 mm; and staged augmentation, 3.5 ± 1.9 mm. Ultimately, the use of carbonated apatite alone as a bone graft material in implant therapy resulted in stable and favorable bone regeneration.

2.
Antibiotics (Basel) ; 12(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136710

RESUMO

Therapeutic light has been increasingly used in clinical dentistry for surgical ablation, disinfection, bio-stimulation, reduction in inflammation, and promotion of wound healing. Photodynamic therapy (PDT), a type of phototherapy, has been used to selectively destroy tumor cells. Antimicrobial PDT (a-PDT) is used to inactivate causative bacteria in infectious oral diseases, such as periodontitis. Several studies have reported that this minimally invasive technique has favorable therapeutic outcomes with a low probability of adverse effects. PDT is based on the photochemical reaction between light, a photosensitizer, and oxygen, which affects its efficacy. Low-power lasers have been predominantly used in phototherapy for periodontal treatments, while light-emitting diodes (LEDs) have received considerable attention as a novel light source in recent years. LEDs can emit broad wavelengths of light, from infrared to ultraviolet, and the lower directivity of LED light appears to be suitable for plaque control over large and complex surfaces. In addition, LED devices are small, lightweight, and less expensive than lasers. Although limited evidence exists on LED-based a-PDT for periodontitis, a-PDT using red or blue LED light could be effective in attenuating bacteria associated with periodontal diseases. LEDs have the potential to provide a new direction for light therapy in periodontics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA