Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 493(7434): 651-5, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23354048

RESUMO

Mechanical responsiveness is essential to all biological systems down to the level of tissues and cells. The intra- and extracellular mechanics of such systems are governed by a series of proteins, such as microtubules, actin, intermediate filaments and collagen. As a general design motif, these proteins self-assemble into helical structures and superstructures that differ in diameter and persistence length to cover the full mechanical spectrum. Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. Here we present synthetic gels that mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polyisocyanopeptides grafted with oligo(ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Using characterization techniques operating at different length scales (for example, macroscopic rheology, atomic force microscopy and molecular force spectroscopy) combined with an appropriate theoretical network model, we establish the hierarchical relationship between the bulk mechanical properties and the single-molecule parameters. Our results show that to develop artificial cytoskeletal or extracellular matrix mimics, the essential design parameters are not only the molecular stiffness, but also the extent of bundling. In contrast to the peptidic materials, our polyisocyanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels with potentially a wide variety of applications, in particular in the biomedical field.


Assuntos
Materiais Biomiméticos/química , Hidrogéis/química , Materiais Biomiméticos/análise , Materiais Biomiméticos/síntese química , Hidrogéis/análise , Hidrogéis/síntese química , Modelos Teóricos , Peptídeos/química , Polímeros/análise , Polímeros/química , Poliuretanos/química , Reologia , Temperatura
2.
Chemistry ; 16(33): 10021-9, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20645341

RESUMO

We describe the synthesis of a series of phthalocyanine (Pc)-perylenediimide (PDI)(8) "octad" molecules, in which eight PDI moieties are attached to a Pc core through alkyl-chain linkers. There is clear spectroscopic evidence that these octads can exist as non-aggregated "monomers" or form aggregates along the Pc cores, depending on the type of Pc and the solvent medium. In the low dielectric constant solvents, into which the octads are soluble, photoexcitation of the PDI units leads to rapid energy transfer to the Pc centre, rather than a charge separation between moieties. In octad monomers, the Pc singlet excited-state decays within tens of ps, whereas the excitons are stabilised in the aggregated form of the molecules, typically with lifetimes in the order of 1-10 ns. By contrast, in an octad design in which pi-pi interactions are suppressed by the steric hindrance of a corona of incompatible glycol tails around the molecule, a more straightforward photophysical interaction of Förster energy transfer between the PDI moieties and Pc core may be inferred. We consider these molecules as prototypical multichromophoric aggregates, giving delocalised states with considerable flexibility of design.


Assuntos
Imidas/química , Indóis/química , Perileno/análogos & derivados , Isoindóis , Estrutura Molecular , Perileno/química , Fotoquímica/métodos , Espectrofotometria
3.
J Phys Chem B ; 115(7): 1590-600, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21280605

RESUMO

We report on the synthesis and detailed photo-physical investigation of four model chromophore side chain polyisocyanopeptides: two homopolymers of platinum-porphyrin functionalized polyisocyanopeptides (Pt-porphyrin-PIC) and perylene-bis(dicarboximide) functionalized polyisocyanopeptides (PDI-PIC), and two statistical copolymers with different ratios of Pt-porphyrin and PDI molecules attached to a rigid, helical polyisocyanopeptide backbone. (1)H NMR and circular dichroism measurements confirm that our model compounds retain a chiral architecture in the presence of the chromophores. The combination of Pt-porphyrin and PDI chromophores allows charge- and/or energy transfer to happen. We observe the excitation and relaxation pathways for selective excitation of the Pt-porphyrin and PDI chromophores. Studies of photoluminescence and transient absorption on nanosecond and picosecond scales upon excitation of Pt-porphyrin chromophores in our multichromophoric assemblies show similar photophysical features to those of the Pt-porphyrin monomers. In contrast, excitation of perylene chromophores results in a series of energy and charge transfer processes with the Pt-porphyrin group and forms additional charge-transfer states, which behave as an intermediate state that facilitates electronic coupling in these multichromophoric systems.


Assuntos
Elétrons , Isocianatos/química , Peptídeos/química , Polímeros/química , Transferência de Energia , Isocianatos/síntese química , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Peptídeos/síntese química , Processos Fotoquímicos , Polímeros/síntese química , Espectrofotometria Ultravioleta
4.
Inorg Chem ; 46(19): 8059-70, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-17696428

RESUMO

The ligand (S,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (S,S)-tetraphos, reacts with hexa(aqua)nickel(II) chloride in the presence of trimethylsilyl triflate (TMSOTf) in dichloromethane to give the yellow square-planar complex [Ni{(R,R)-tetraphos}](OTf)2, which has been crystallographically characterized as the square-pyramidal, acetonitrile adduct [Ni(NCMe){(R,R)-tetraphos}]OTf. Cyclic voltammograms of the nickel(II) complex in dichloromethane and acetonitrile at 20 degrees C showed two reduction processes at negative potentials with oxidative (E(p)(ox)) and reductive (E(p)(red)) peak separations similar to those observed for ferrocene/ferrocenium under identical conditions, suggesting two one-electron steps. The cyclic voltammetric data for the divalent nickel complex in acetonitrile at temperatures below -20 degrees C were interpreted according to reversible coordination of acetonitrile to the nickel(I) and nickel(0) complexes. The divalent palladium and platinum complexes [M{(R,R)-tetraphos}](PF6)2 and [M2{(R,R)-tetraphos}2](OTf)4 have been prepared. The reduction potentials for the complexes [M{(R,R)-tetraphos}](PF6)2 increase in the order nickel(II) < palladium(II) < platinum(II). The reaction of (S,S)-tetraphos with bis(cycloocta-1,5-diene)nickel(0) in benzene affords orange [Ni{(R,R)-tetraphos}], which slowly rearranges into the thermodynamically more stable, yellow, double-stranded helicate [Ni2{(R,R)-tetraphos}2]; the crystal structures of both complexes have been determined. The reactions of (S,S)-tetraphos with [M(PPh3)4] in toluene (M = Pd) or benzene (M = Pt) furnish the double-stranded helicates [M2{(R,R)-tetraphos}2]; the palladium complex crystallizes from hot benzene as the 2-benzene solvate and was structurally characterized by X-ray crystallography. In each of the three zerovalent complexes, the coordinated (R,R)-tetraphos stereospecifically generates tetrahedral M(PP)2 stereocenters of M configuration.

5.
Inorg Chem ; 42(14): 4469-78, 2003 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-12844321

RESUMO

Numerous reports describe the photoluminescence of two- and three-coordinate gold(I)-phosphine complexes, but emission in their analogous four-coordinate complexes is almost unknown. This work examines the luminescence of tetrahedral gold(I) complexes of the types [Au(diphos)(2)]PF(6) (diphos = 1,2-bis(diphenylphosphino)ethane, 1) and [Au(2)(tetraphos)(2)](PF(6))(2) (tetraphos = (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (R,R)-(+/-)/(R,S)-2). Although nonemitting in solution, these complexes luminesce with an intense yellow color (lambda(max) 580-620 nm) at 293 K in the solid state or when immobilized as molecular dispersions within solid matrixes. The excited-state lifetimes of the emissions (tau 4.1-9.4 micros) are markedly dependent on the inter- and intramolecular phenyl-phenyl pairing interactions present. At 77 K in an ethanol glass, two transitions are observed: a minor emission at lambda(max) 415-450 nm and a major emission at lambda(max) 520-595 nm. For [Au(1)(2)]PF(6), lifetimes of tau 251.0 +/- 20.5 micros were determined for the former transition and tau 14.9 +/- 4.6 micros for the latter. Density functional theory (DFT) calculations and comparative studies indicate that the former of these emissions involves triplet LMCT pi(Ph) --> Au(d)-P(p) transitions associated with individual P-phenyl groups. The latter emissions, which are the only ones observed at 293 K, are assigned to LMCT pi(Ph-Ph) --> Au(d)-P(p) transitions associated with excited P-phenyl dimers. Other tetrahedral gold(I)-phosphine complexes containing paired P-Ph substituents display similar emissions. The corresponding phosphine ligands, whether free, protonated, or bound to Ag(I), do not exhibit comparable emissions. Far from being rare, luminescence in four-coordinate Au(I)-phosphine complexes appears to be general when stacked P-phenyl groups are present.

6.
Inorg Chem ; 42(26): 8709-15, 2003 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-14686848

RESUMO

The ligand (R,S)-Ph(2)PCH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)PPh(2), (R,S)-tetraphos, combines with silver(I) and gold(I) ions in the presence of hexafluorophosphate to diastereoselectively self-assemble the head-to-head (H,H) diastereomers of the double-stranded, dinuclear metal complexes [M(2)[(R,S)-tetraphos](2)](PF(6))(2) in which the two chiral metal centers in the complexes have M (R end of phosphine) and P (S end of phosphine) configurations. The crystal and molecular structures of the compounds have been determined: (H,H)-(M,P) -[Ag(2)[(R,S)-tetraphos](2)](PF(6))(2), monoclinic, P2(1)/c, a = 10.3784(2), b = 47.320(1), c = 17.3385(4) A, beta = 103.8963(5) degrees, Z = 4; (H,H)-(M,P)-[Au(2)[(R,S)-tetraphos](2)](PF(6))(2), monoclinic, P.2(1) (No. 4, c unique axis), a = 24.385(4), b = 46.175(3), c = 14.820(4) A, Z = 8. The complexes crystallize as racemic compounds in which the unit cell in each case contains equal numbers of enantiomorphic molecules of the cation and associated anions. The cations in both structures have similar side-by-side structures of idealized C(2) symmetry, the bulk helicity of each molecule in the solid state being due solely to the twist of the central ten-membered ring containing the two metal ions of opposite configuration, which has the chiral twist-boat-chair-boat conformation. When 1 equiv each of (R,S)-tetraphos, (R,R)-(+/-)-tetraphos, (S,S)-(+)-tetraphos, 2 equiv of Ph(2)PCH(2)CH(2)PPh(2) (dppe), and 7 equiv of [AuCl(SMe(2))] in dichloromethane are allowed to react for several minutes in the presence of an excess of ammonium hexafluorophosphate in water (two phases), the products are the double-stranded digold(I) complexes in which each ligand strand has recognized itself by stereoselective self-assembly, together with [Au(dppe)(2)]PF(6).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA