Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(4): 801-13, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953112

RESUMO

During cell division, transcription factors (TFs) are removed from chromatin twice, during DNA synthesis and during condensation of chromosomes. How TFs can efficiently find their sites following these stages has been unclear. Here, we have analyzed the binding pattern of expressed TFs in human colorectal cancer cells. We find that binding of TFs is highly clustered and that the clusters are enriched in binding motifs for several major TF classes. Strikingly, almost all clusters are formed around cohesin, and loss of cohesin decreases both DNA accessibility and binding of TFs to clusters. We show that cohesin remains bound in S phase, holding the nascent sister chromatids together at the TF cluster sites. Furthermore, cohesin remains bound to the cluster sites when TFs are evicted in early M phase. These results suggest that cohesin-binding functions as a cellular memory that promotes re-establishment of TF clusters after DNA replication and chromatin condensation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Motivos de Nucleotídeos , Coesinas
2.
Cell ; 152(1-2): 327-39, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332764

RESUMO

Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.


Assuntos
Imunoprecipitação da Cromatina , Modelos Biológicos , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/metabolismo , Animais , DNA/química , Humanos , Cadeias de Markov , Camundongos , Filogenia , Fatores de Transcrição/genética
3.
Genome Res ; 30(7): 962-973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32703884

RESUMO

RNA-binding proteins (RBPs) regulate RNA metabolism at multiple levels by affecting splicing of nascent transcripts, RNA folding, base modification, transport, localization, translation, and stability. Despite their central role in RNA function, the RNA-binding specificities of most RBPs remain unknown or incompletely defined. To address this, we have assembled a genome-scale collection of RBPs and their RNA-binding domains (RBDs) and assessed their specificities using high-throughput RNA-SELEX (HTR-SELEX). Approximately 70% of RBPs for which we obtained a motif bound to short linear sequences, whereas ∼30% preferred structured motifs folding into stem-loops. We also found that many RBPs can bind to multiple distinctly different motifs. Analysis of the matches of the motifs in human genomic sequences suggested novel roles for many RBPs. We found that three cytoplasmic proteins-ZC3H12A, ZC3H12B, and ZC3H12C-bound to motifs resembling the splice donor sequence, suggesting that these proteins are involved in degradation of cytoplasmic viral and/or unspliced transcripts. Structural analysis revealed that the RNA motif was not bound by the conventional C3H1 RNA-binding domain of ZC3H12B. Instead, the RNA motif was bound by the ZC3H12B's PilT N terminus (PIN) RNase domain, revealing a potential mechanism by which unconventional RBDs containing active sites or molecule-binding pockets could interact with short, structured RNA molecules. Our collection containing 145 high-resolution binding specificity models for 86 RBPs is the largest systematic resource for the analysis of human RBPs and will greatly facilitate future analysis of the various biological roles of this important class of proteins.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Sequência de Bases , Genoma Humano , Humanos , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Ribonucleases/química , Ribonucleases/metabolismo , Técnica de Seleção de Aptâmeros
4.
Cell ; 133(3): 537-48, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18455992

RESUMO

To allow genome-scale identification of genes that regulate cellular signaling, we cloned >90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase activity-deficient mutants. To establish the utility of this resource, we tested the effect of expression of the kinases on three different cellular signaling models. In all screens, many kinases had a modest but significant effect, apparently due to crosstalk between signaling pathways. However, the strongest effects were found with known regulators and novel components, such as MAP3K10 and DYRK2, which we identified in a mammalian Hedgehog (Hh) signaling screen. DYRK2 directly phosphorylated and induced the proteasome-dependent degradation of the key Hh pathway-regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2 and the known Hh pathway component, GSK3beta. Our results establish kinome expression screening as a highly effective way to identify physiological signaling pathway components and genes involved in pathological signaling crosstalk.


Assuntos
Proteínas Hedgehog/metabolismo , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/metabolismo , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Fibroblastos/metabolismo , Expressão Gênica , Biblioteca Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Mamíferos , Camundongos , Células NIH 3T3 , Proteínas Oncogênicas/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transativadores/metabolismo , Células Vero , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Quinases Dyrk
5.
Nature ; 527(7578): 384-8, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26550823

RESUMO

Gene expression is regulated by transcription factors (TFs), proteins that recognize short DNA sequence motifs. Such sequences are very common in the human genome, and an important determinant of the specificity of gene expression is the cooperative binding of multiple TFs to closely located motifs. However, interactions between DNA-bound TFs have not been systematically characterized. To identify TF pairs that bind cooperatively to DNA, and to characterize their spacing and orientation preferences, we have performed consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) analysis of 9,400 TF-TF-DNA interactions. This analysis revealed 315 TF-TF interactions recognizing 618 heterodimeric motifs, most of which have not been previously described. The observed cooperativity occurred promiscuously between TFs from diverse structural families. Structural analysis of the TF pairs, including a novel crystal structure of MEIS1 and DLX3 bound to their identified recognition site, revealed that the interactions between the TFs were predominantly mediated by DNA. Most TF pair sites identified involved a large overlap between individual TF recognition motifs, and resulted in recognition of composite sites that were markedly different from the individual TF's motifs. Together, our results indicate that the DNA molecule commonly plays an active role in cooperative interactions that define the gene regulatory lexicon.


Assuntos
DNA/genética , DNA/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Cristalografia por Raios X , Regulação da Expressão Gênica/genética , Humanos , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Reprodutibilidade dos Testes , Especificidade por Substrato/genética
6.
Nucleic Acids Res ; 46(8): e44, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385521

RESUMO

In some dimeric cases of transcription factor (TF) binding, the specificity of dimeric motifs has been observed to differ notably from what would be expected were the two factors to bind to DNA independently of each other. Current motif discovery methods are unable to learn monomeric and dimeric motifs in modular fashion such that deviations from the expected motif would become explicit and the noise from dimeric occurrences would not corrupt monomeric models. We propose a novel modeling technique and an expectation maximization algorithm, implemented as software tool MODER, for discovering monomeric TF binding motifs and their dimeric combinations. Given training data and seeds for monomeric motifs, the algorithm learns in the same probabilistic framework a mixture model which represents monomeric motifs as standard position-specific probability matrices (PPMs), and dimeric motifs as pairs of monomeric PPMs, with associated orientation and spacing preferences. For dimers the model represents deviations from pure modular model of two independent monomers, thus making co-operative binding effects explicit. MODER can analyze in reasonable time tens of Mbps of training data. We validated the tool on HT-SELEX and ChIP-seq data. Our findings include some TFs whose expected model has palindromic symmetry but the observed model is directional.


Assuntos
DNA/química , DNA/metabolismo , Fatores de Transcrição/metabolismo , Algoritmos , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Aprendizado de Máquina , Modelos Estatísticos , Motivos de Nucleotídeos , Probabilidade , Técnica de Seleção de Aptâmeros , Software
7.
Mol Syst Biol ; 13(10): 945, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993443

RESUMO

Loss-of-function screening by CRISPR/Cas9 gene knockout with pooled, lentiviral guide libraries is a widely applicable method for systematic identification of genes contributing to diverse cellular phenotypes. Here, Random Sequence Labels (RSLs) are incorporated into the guide library, which act as unique molecular identifiers (UMIs) to allow massively parallel lineage tracing and lineage dropout screening. RSLs greatly improve the reproducibility of results by increasing both the precision and the accuracy of screens. They reduce the number of cells needed to reach a set statistical power, or allow a more robust screen using the same number of cells.


Assuntos
Técnicas de Inativação de Genes , Biologia de Sistemas/métodos , Sistemas CRISPR-Cas , Linhagem Celular , Biblioteca Gênica , Células HEK293 , Humanos
8.
Bioinformatics ; 32(17): i629-i638, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587683

RESUMO

MOTIVATION: Transcription factor (TF) binding can be studied accurately in vivo with ChIP-exo and ChIP-Nexus experiments. Only fraction of TF binding mechanisms are yet fully understood and accurate knowledge of binding locations and patterns of TFs is key to understanding binding that is not explained by simple positional weight matrix models. ChIP-exo/Nexus experiments can also offer insight on the effect of single nucleotide polymorphism (SNP) at TF binding sites on expression of the target genes. This is an important mechanism of action for disease-causing SNPs at non-coding genomic regions. RESULTS: We describe a peak caller PeakXus that is specifically designed to leverage the increased resolution of ChIP-exo/Nexus and developed with the aim of making as few assumptions of the data as possible to allow discoveries of novel binding patterns. We apply PeakXus to ChIP-Nexus and ChIP-exo experiments performed both in Homo sapiens and in Drosophila melanogaster cell lines. We show that PeakXus consistently finds more peaks overlapping with a TF-specific recognition sequence than published methods. As an application example we demonstrate how PeakXus can be coupled with unique molecular identifiers (UMIs) to measure the effect of a SNP overlapping with a TF binding site on the in vivo binding of the TF. AVAILABILITY AND IMPLEMENTATION: Source code of PeakXus is available at https://github.com/hartonen/PeakXus CONTACT: tuomo.hartonen@helsinki.fi or jussi.taipale@ki.se.


Assuntos
Sítios de Ligação , Fatores de Transcrição , Animais , Imunoprecipitação da Cromatina , Biologia Computacional , Simulação por Computador , Drosophila melanogaster , Perfilação da Expressão Gênica , Loci Gênicos , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA
9.
EMBO J ; 29(13): 2147-60, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20517297

RESUMO

Members of the large ETS family of transcription factors (TFs) have highly similar DNA-binding domains (DBDs)-yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA-binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA-binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high-throughput microwell-based TF DNA-binding specificity assay, and protein-binding microarrays (PBMs). Both approaches reveal that the ETS-binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino-acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP-seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo.


Assuntos
DNA/metabolismo , Estudo de Associação Genômica Ampla , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/química , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/química , Análise de Sequência de DNA
10.
Nat Methods ; 9(1): 72-4, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101854

RESUMO

Counting individual RNA or DNA molecules is difficult because they are hard to copy quantitatively for detection. To overcome this limitation, we applied unique molecular identifiers (UMIs), which make each molecule in a population distinct, to genome-scale human karyotyping and mRNA sequencing in Drosophila melanogaster. Use of this method can improve accuracy of almost any next-generation sequencing method, including chromatin immunoprecipitation-sequencing, genome assembly, diagnostics and manufacturing-process control and monitoring.


Assuntos
Genômica/métodos , Cariotipagem/métodos , RNA Mensageiro/análise , Análise de Sequência de RNA/métodos , Animais , Imunoprecipitação da Cromatina/métodos , Síndrome de Down/genética , Drosophila melanogaster , Feminino , Biblioteca Gênica , Humanos , Masculino
11.
Genome Res ; 20(6): 861-73, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20378718

RESUMO

The genetic code-the binding specificity of all transfer-RNAs--defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the approximately 1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers.


Assuntos
Técnica de Seleção de Aptâmeros , Fatores de Transcrição/metabolismo , Marcadores de Afinidade , Sequência de Bases , Sítios de Ligação , DNA , Humanos , Dados de Sequência Molecular
12.
Nat Biotechnol ; 41(2): 197-203, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36163549

RESUMO

Here we describe a competitive genome editing method that measures the effect of mutations on molecular functions, based on precision CRISPR editing using template libraries with either the original or altered sequence, and a sequence tag, enabling direct comparison between original and mutated cells. Using the example of the MYC oncogene, we identify important transcriptional targets and show that E-box mutations at MYC target gene promoters reduce cellular fitness.


Assuntos
Edição de Genes , Fatores de Transcrição , Sítios de Ligação/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
13.
J Basic Microbiol ; 52(2): 184-94, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21780148

RESUMO

Fungal infection of barley and malt, particularly by the Fusarium species, is a direct cause of spontaneous overfoaming of beer, referred to as gushing. We have shown previously that small fungal proteins, hydrophobins, act as gushing-inducing factors in beer. The aim of our present study was to isolate and characterize hydrophobins from a gushing-active fungus, Fusarium graminearum (teleomorph Gibberella zeae) and related species. We generated profile hidden Markov models (profile HMMs) for the hydrophobin classes Ia, Ib and II from the multiple sequence alignments of their known members available in public domain databases. We searched the published Fusarium graminearum genome with the Markov models. The best matching sequences and the corresponding genes were isolated from F. graminearum and the related species F. culmorum and F. poae by PCR and characterized. One each of the putative F. graminearum and F. poae hydrophobin genes were expressed in the heterologous host Trichoderma reesei. The proteins corresponding to the genes were purified and identified as hydrophobins and named GzHYD5 and FpHYD5, respectively. Concentrations of 0.003 ppm of these hydrophobins were observed to induce vigorous beer gushing.


Assuntos
Cerveja/microbiologia , Proteínas Fúngicas/metabolismo , Fusarium/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Fusarium/metabolismo , Genes Fúngicos , Cadeias de Markov , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Dev Cell ; 57(8): 1024-1036.e5, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35472319

RESUMO

The transcription factor Myc drives cell growth across animal phyla and is activated in most forms of human cancer. However, it is unclear which Myc target genes need to be regulated to induce growth and whether multiple targets act additively or if induction of each target is individually necessary. Here, we identified Myc target genes whose regulation is conserved between humans and flies and deleted Myc-binding sites (E-boxes) in the promoters of fourteen of these genes in Drosophila. E-box mutants of essential genes were homozygous viable, indicating that the E-boxes are not required for basal expression. Eight E-box mutations led to Myc-like phenotypes; the strongest mutant, ppanEbox-/-, also made the flies resistant to Myc-induced cell growth without affecting Myc-induced apoptosis. The ppanEbox-/- flies are healthy and display only a minor developmental delay, suggesting that it may be possible to treat or prevent tumorigenesis by targeting individual downstream targets of Myc.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Ribossomos , Animais , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribossomos/metabolismo , Ativação Transcricional , Regulação para Cima
15.
Nat Genet ; 54(3): 283-294, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190730

RESUMO

DNA can determine where and when genes are expressed, but the full set of sequence determinants that control gene expression is unknown. Here, we measured the transcriptional activity of DNA sequences that represent an ~100 times larger sequence space than the human genome using massively parallel reporter assays (MPRAs). Machine learning models revealed that transcription factors (TFs) generally act in an additive manner with weak grammar and that most enhancers increase expression from a promoter by a mechanism that does not appear to involve specific TF-TF interactions. The enhancers themselves can be classified into three types: classical, closed chromatin and chromatin dependent. We also show that few TFs are strongly active in a cell, with most activities being similar between cell types. Individual TFs can have multiple gene regulatory activities, including chromatin opening and enhancing, promoting and determining transcription start site (TSS) activity, consistent with the view that the TF binding motif is the key atomic unit of gene expression.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição , Sítios de Ligação/genética , Genoma Humano/genética , Humanos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Gene ; 410(1): 53-66, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18191345

RESUMO

Gene and protein expression is controlled so that cells can react to changing intra- and extracellular signals by modulating biochemical networks and pathways. We have previously shown that gene expression and the properties of expressed proteins are dynamically correlated. Here we investigated correlations between gene related parameters and gene expression patterns, and found statistically significant correlations in microarray datasets for different cell types, organisms and processes, including human B and T cell stimulation, cell cycle in HeLa cells, infection in intestinal epithelial cells, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle. Our method was applied to time course datasets individually for each time point. We derived from sequence information numerous parameters for nucleotide composition, two-base composition, codon usage, skew parameters, and codon bias. In addition to coding regions, we also investigated correlations for complete genes and introns. Significant dynamic correlations were identified for each of the analyses. Our method also proved useful for detecting dynamic shifts in gene expression profiles, such as in the D. melanogaster dataset. Detection of changes in the properties of expressed genes and proteins might be useful for predicting or following biological processes, responses, growth, differentiation and possibly in related disorders.


Assuntos
Expressão Gênica , Genoma , Animais , Ciclo Celular , Drosophila melanogaster/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
17.
Nat Biotechnol ; 36(6): 521-529, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29786094

RESUMO

No existing method to characterize transcription factor (TF) binding to DNA allows genome-wide measurement of all TF-binding activity in cells. Here we present a massively parallel protein activity assay, active TF identification (ATI), that measures the DNA-binding activity of all TFs in cell or tissue extracts. ATI is based on electrophoretic separation of protein-bound DNA sequences from a highly complex DNA library and subsequent mass-spectrometric identification of the DNA-bound proteins. We applied ATI to four mouse tissues and mouse embryonic stem cells and found that, in a given tissue or cell type, a small set of TFs, which bound to only ∼10 distinct motifs, displayed strong DNA-binding activity. Some of these TFs were found in all cell types, whereas others were specific TFs known to determine cell fate in the analyzed tissue or cell type. We also show that a small number of TFs determined the accessible chromatin landscape of a cell, suggesting that gene regulatory logic may be simpler than previously appreciated.


Assuntos
Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Biotecnologia , Diferenciação Celular , Cromatina/genética , DNA/genética , DNA/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Especificidade da Espécie , Distribuição Tecidual
18.
Nat Commun ; 9(1): 3664, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202008

RESUMO

Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within AI peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point mutations. Importantly, the data reveal several associations between AI target genes, suggesting a role for a network of lineage-determining transcription factors in colorectal tumorigenesis. Overall, the results unravel the contribution of AI in colorectal cancer and provide a plausible explanation why so few genes are commonly affected by point mutations in cancers.


Assuntos
Desequilíbrio Alélico , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Sistemas CRISPR-Cas , Aberrações Cromossômicas , Cromossomos Humanos Par 8 , Neoplasias Colorretais/patologia , Variações do Número de Cópias de DNA , Dinamarca , Perfilação da Expressão Gênica , Genômica , Genótipo , Humanos , Perda de Heterozigosidade , Repetições de Microssatélites , Fenótipo , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Sequenciamento Completo do Genoma
19.
BMC Genomics ; 8: 325, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-17868481

RESUMO

BACKGROUND: Several dozen fungi encompassing traditional model organisms, industrial production organisms and human and plant pathogens have been sequenced recently and their particular genomic features analysed in detail. In addition comparative genomics has been used to analyse specific sub groups of fungi. Notably, analysis of the phylum Saccharomycotina has revealed major events of evolution such as the recent genome duplication and subsequent gene loss. However, little has been done to gain a comprehensive comparative view to the fungal kingdom. We have carried out a computational genome wide comparison of protein coding gene content of Saccharomycotina and Pezizomycotina, which include industrially important yeasts and filamentous fungi, respectively. RESULTS: Our analysis shows that based on genome redundancy, the traditional model organisms Saccharomyces cerevisiae and Neurospora crassa are exceptional among fungi. This can be explained by the recent genome duplication in S. cerevisiae and the repeat induced point mutation mechanism in N. crassa. Interestingly in Pezizomycotina a subset of protein families related to plant biomass degradation and secondary metabolism are the only ones showing signs of recent expansion. In addition, Pezizomycotina have a wealth of phylum specific poorly characterised genes with a wide variety of predicted functions. These genes are well conserved in Pezizomycotina, but show no signs of recent expansion. The genes found in all fungi except Saccharomycotina are slightly better characterised and predicted to encode mainly enzymes. The genes specific to Saccharomycotina are enriched in transcription and mitochondrion related functions. Especially mitochondrial ribosomal proteins seem to have diverged from those of Pezizomycotina. In addition, we highlight several individual gene families with interesting phylogenetic distributions. CONCLUSION: Our analysis predicts that all Pezizomycotina unlike Saccharomycotina can potentially produce a wide variety of secondary metabolites and secreted enzymes and that the responsible gene families are likely to evolve fast. Both types of fungal products can be of commercial value, or on the other hand cause harm to humans. In addition, a great number of novel predicted and known enzymes are found from all fungi except Saccharomycotina. Therefore further studies and exploitation of fungal metabolism appears very promising.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Algoritmos , Análise por Conglomerados , Biologia Computacional , Bases de Dados Genéticas , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Variação Genética , Genoma Fúngico , Genômica , Fases de Leitura Aberta , Filogenia , Análise de Componente Principal , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Software
20.
BMC Biotechnol ; 7: 28, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17537269

RESUMO

BACKGROUND: Biologically relevant molecular markers can be used in evaluation of the physiological state of an organism in biotechnical processes. We monitored at high frequency the expression of 34 marker genes in batch, fed-batch and continuous cultures of the filamentous fungus Trichoderma reesei by the transcriptional analysis method TRAC (TRanscript analysis with the aid of Affinity Capture). Expression of specific genes was normalised either with respect to biomass or to overall polyA RNA concentration. Expressional variation of the genes involved in various process relevant cellular functions, such as protein production, growth and stress responses, was related to process parameters such as specific growth and production rates and substrate and dissolved oxygen concentrations. RESULTS: Gene expression of secreted cellulases and recombinant Melanocarpus albomyces laccase predicted the trends in the corresponding extracellular enzyme production rates and was highest in a narrow "physiological window" in the specific growth rate (micro) range of 0.03-0.05 h-1. Expression of ribosomal protein mRNAs was consistent with the changes in mu. Nine starvation-related genes were found as potential markers for detection of insufficient substrate feed for maintaining optimal protein production. For two genes induced in anaerobic conditions, increasing transcript levels were measured as dissolved oxygen decreased. CONCLUSION: The data obtained by TRAC supported the usefulness of focused and intensive transcriptional analysis in monitoring of biotechnical processes providing thus tools for process optimisation purposes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos/fisiologia , Trichoderma/citologia , Trichoderma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA