Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 119-147, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125357

RESUMO

The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.


Assuntos
Células Epiteliais/fisiologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Animais , Comunicação Celular , Homeostase , Humanos , Imunidade Inata , Imunoglobulina A/metabolismo , Mucosa Intestinal/patologia , Cicatrização
2.
Nat Immunol ; 17(11): 1244-1251, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27760104

RESUMO

Intestinal epithelial cells apically express glycans, especially α1,2-fucosyl linkages, which work as a biological interface for the host-microbe interaction. Emerging studies have shown that epithelial α1,2-fucosylation is regulated by microbes and by group 3 innate lymphoid cells (ILC3s). Dysregulation of the gene (FUT2) encoding fucosyltransferase 2, an enzyme governing epithelial α1,2-fucosylation, is associated with various human disorders, including infection and chronic inflammatory diseases. This suggests a critical role for an interaction between microbes, epithelial cells and ILC3s mediated via glycan residues. In this Review, using α1,2-fucose and Fut2 gene expression as an example, we describe how epithelial glycosylation is controlled by immune cells and luminal microbes. We also address the pathophysiological contribution of epithelial α1,2-fucosylation to pathogenic and commensal microbes as well as the potential of α1,2-fucose and its regulatory pathway as previously unexploited targets in the development of new therapeutic approaches for human diseases.


Assuntos
Gastroenterite/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Animais , Metabolismo dos Carboidratos , Carboidratos , Fucose/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Gastroenterite/genética , Gastroenterite/imunologia , Gastroenterite/microbiologia , Predisposição Genética para Doença , Glicosilação , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfócitos/imunologia , Linfócitos/metabolismo , Polimorfismo Genético , Galactosídeo 2-alfa-L-Fucosiltransferase
3.
Immunity ; 51(3): 508-521.e6, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471109

RESUMO

Recent experimental data and clinical, genetic, and transcriptome evidence from patients converge to suggest a key role of interleukin-1ß (IL-1ß) in the pathogenesis of Kawasaki disease (KD). However, the molecular mechanisms involved in the development of cardiovascular lesions during KD vasculitis are still unknown. Here, we investigated intestinal barrier function in KD vasculitis and observed evidence of intestinal permeability and elevated circulating secretory immunoglobulin A (sIgA) in KD patients, as well as elevated sIgA and IgA deposition in vascular tissues in a mouse model of KD vasculitis. Targeting intestinal permeability corrected gut permeability, prevented IgA deposition and ameliorated cardiovascular pathology in the mouse model. Using genetic and pharmacologic inhibition of IL-1ß signaling, we demonstrate that IL-1ß lies upstream of disrupted intestinal barrier function, subsequent IgA vasculitis development, and cardiac inflammation. Targeting mucosal barrier dysfunction and the IL-1ß pathway may also be applicable to other IgA-related diseases, including IgA vasculitis and IgA nephropathy.


Assuntos
Doenças Cardiovasculares/imunologia , Imunoglobulina A/imunologia , Inflamação/imunologia , Intestinos/imunologia , Animais , Modelos Animais de Doenças , Humanos , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Linfonodos Mucocutâneos/imunologia , Permeabilidade , Transdução de Sinais/imunologia , Vasculite/imunologia
4.
Immunity ; 46(5): 863-874.e4, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514691

RESUMO

Mast cells are important for eradication of intestinal nematodes; however, their precise mechanisms of action have remained elusive, especially in the early phase of infection. We found that Spi-B-deficient mice had increased numbers of mast cells and rapidly expelled the Heligmosomoides polygyrus (Hp) nematode. This was accompanied by induction of interleukin-13 (IL-13)-producing group 2 innate lymphoid cells (ILC2) and goblet cell hyperplasia. Immediately after Hp infection, mast cells were rapidly activated to produce IL-33 in response to ATP released from apoptotic intestinal epithelial cells. In vivo inhibition of the P2X7 ATP receptor rendered the Spi-B-deficient mice susceptible to Hp, concomitant with elimination of mast cell activation and IL-13-producing ILC2 induction. These results uncover a previously unknown role for mast cells in innate immunity in that activation of mast cells by ATP orchestrates the development of a protective type 2 immune response, in part by producing IL-33, which contributes to ILC2 activation.


Assuntos
Helmintíase/imunologia , Helmintíase/parasitologia , Helmintos/imunologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Mastócitos/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Celular , Diferenciação Celular , Modelos Animais de Doenças , Resistência à Doença/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Expressão Gênica , Helmintíase/genética , Imunofenotipagem , Interleucina-33/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/metabolismo , Masculino , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Int Immunol ; 36(1): 33-43, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38006376

RESUMO

We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.


Assuntos
Alcaligenes , Lipídeo A , Animais , Camundongos , Lipídeo A/farmacologia , Adjuvantes Imunológicos/farmacologia , Células Dendríticas
6.
Immunity ; 44(3): 634-646, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26982365

RESUMO

Physical separation between the mammalian immune system and commensal bacteria is necessary to limit chronic inflammation. However, selective species of commensal bacteria can reside within intestinal lymphoid tissues of healthy mammals. Here, we demonstrate that lymphoid-tissue-resident commensal bacteria (LRC) colonized murine dendritic cells and modulated their cytokine production. In germ-free and antibiotic-treated mice, LRCs colonized intestinal lymphoid tissues and induced multiple members of the IL-10 cytokine family, including dendritic-cell-derived IL-10 and group 3 innate lymphoid cell (ILC3)-derived IL-22. Notably, IL-10 limited the development of pro-inflammatory Th17 cell responses, and IL-22 production enhanced LRC colonization in the steady state. Furthermore, LRC colonization protected mice from lethal intestinal damage in an IL-10-IL-10R-dependent manner. Collectively, our data reveal a unique host-commensal-bacteria dialog whereby selective subsets of commensal bacteria interact with dendritic cells to facilitate tissue-specific responses that are mutually beneficial for both the host and the microbe.


Assuntos
Infecções por Bordetella/imunologia , Bordetella/imunologia , Células Dendríticas/imunologia , Interleucina-10/metabolismo , Intestinos/imunologia , Tecido Linfoide/imunologia , Células Th17/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/microbiologia , Interleucina-10/genética , Interleucinas/genética , Interleucinas/metabolismo , Intestinos/microbiologia , Tecido Linfoide/microbiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Simbiose/genética , Células Th17/microbiologia , Interleucina 22
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027453

RESUMO

Paneth cells are intestinal epithelial cells that release antimicrobial peptides, such as α-defensin as part of host defense. Together with mesenchymal cells, Paneth cells provide niche factors for epithelial stem cell homeostasis. Here, we report two subtypes of murine Paneth cells, differentiated by their production and utilization of fucosyltransferase 2 (Fut2), which regulates α(1,2)fucosylation to create cohabitation niches for commensal bacteria and prevent invasion of the intestine by pathogenic bacteria. The majority of Fut2- Paneth cells were localized in the duodenum, whereas the majority of Fut2+ Paneth cells were in the ileum. Fut2+ Paneth cells showed higher granularity and structural complexity than did Fut2- Paneth cells, suggesting that Fut2+ Paneth cells are involved in host defense. Signaling by the commensal bacteria, together with interleukin 22 (IL-22), induced the development of Fut2+ Paneth cells. IL-22 was found to affect the α-defensin secretion system via modulation of Fut2 expression, and IL-17a was found to increase the production of α-defensin in the intestinal tract. Thus, these intestinal cytokines regulate the development and function of Fut2+ Paneth cells as part of gut defense.


Assuntos
Citocinas/metabolismo , Fucosiltransferases/metabolismo , Microbioma Gastrointestinal/fisiologia , Celulas de Paneth/metabolismo , Animais , Fucosiltransferases/genética , Íleo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Camundongos , Simbiose , alfa-Defensinas/metabolismo , Interleucina 22 , Galactosídeo 2-alfa-L-Fucosiltransferase
8.
Immunity ; 42(2): 279-293, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692702

RESUMO

Crosslinking of the immunoglobulin receptor FcεRI activates basophils and mast cells to induce immediate and chronic allergic inflammation. However, it remains unclear how the chronic allergic inflammation is regulated. Here, we showed that ecto-nucleotide pyrophosphatase-phosphodiesterase 3 (E-NPP3), also known as CD203c, rapidly induced by FcεRI crosslinking, negatively regulated chronic allergic inflammation. Basophil and mast cell numbers increased in Enpp3(-/-) mice with augmented serum ATP concentrations. Enpp3(-/-) mice were highly sensitive to chronic allergic pathologies, which was reduced by ATP blockade. FcεRI crosslinking induced ATP secretion from basophils and mast cells, and ATP activated both cells. ATP clearance was impaired in Enpp3(-/-) cells. Enpp3(-/-)P2rx7(-/-) mice showed decreased responses to FcεRI crosslinking. Thus, ATP released by FcεRI crosslinking stimulates basophils and mast cells for further activation causing allergic inflammation. E-NPP3 decreases ATP concentration and suppresses basophil and mast cell activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Asma/imunologia , Basófilos/imunologia , Mastócitos/imunologia , Diester Fosfórico Hidrolases/imunologia , Pirofosfatases/imunologia , Receptores de IgE/imunologia , Trifosfato de Adenosina/farmacologia , Animais , Basófilos/citologia , Dermatite de Contato/imunologia , Diarreia/imunologia , Diarreia/patologia , Imunoglobulina E/imunologia , Mastócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Anafilaxia Cutânea Passiva/imunologia , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Trinitrobenzenos/imunologia
9.
J Biol Chem ; 298(11): 102534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162507

RESUMO

Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria-produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid ß-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.


Assuntos
Intestino Delgado , Lactobacillales , PPAR delta , Ácido gama-Linolênico , Humanos , Ácido gama-Linolênico/metabolismo , Lactobacillales/metabolismo , Ligantes , Organoides/metabolismo , PPAR delta/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia
10.
Eur J Immunol ; 52(7): 1035-1046, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476255

RESUMO

The pancreas contains exocrine glands, which release enzymes (e.g., amylase, trypsin, and lipase) that are important for digestion and islets, which produce hormones. Digestive enzymes and hormones are secreted from the pancreas into the duodenum and bloodstream, respectively. Growing evidence suggests that the roles of the pancreas extend to not only the secretion of digestive enzymes and hormones but also to the regulation of intestinal homeostasis and inflammation (e.g., mucosal defense to pathogens and pathobionts). Organ crosstalk between the pancreas and intestine is linked to a range of physiological, immunological, and pathological activities, such as the regulation of the gut microbiota by the pancreatic proteins and lipids, the retroaction of the gut microbiota on the pancreas, the relationship between inflammatory bowel disease, and pancreatic diseases. We herein discuss the current understanding of the pancreas-intestinal barrier axis and the control of commensal bacteria in intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Homeostase , Hormônios , Humanos , Inflamação , Mucosa Intestinal , Intestinos , Pâncreas
11.
Immunity ; 40(4): 530-41, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24726878

RESUMO

Mast cells (MCs) mature locally, thus possessing tissue-dependent phenotypes for their critical roles in both protective immunity against pathogens and the development of allergy or inflammation. We previously reported that MCs highly express P2X7, a receptor for extracellular ATP, in the colon but not in the skin. The ATP-P2X7 pathway induces MC activation and consequently exacerbates the inflammation. Here, we identified the mechanisms by which P2X7 expression on MCs is reduced by fibroblasts in the skin, but not in the other tissues. The retinoic-acid-degrading enzyme Cyp26b1 is highly expressed in skin fibroblasts, and its inhibition resulted in the upregulation of P2X7 on MCs. We also noted the increased expression of P2X7 on skin MCs and consequent P2X7- and MC-dependent dermatitis (so-called retinoid dermatitis) in the presence of excessive amounts of retinoic acid. These results demonstrate a unique skin-barrier homeostatic network operating through Cyp26b1-mediated inhibition of ATP-dependent MC activation by fibroblasts.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Dermatite/imunologia , Fibroblastos/imunologia , Mastócitos/imunologia , Receptores Purinérgicos P2X7/metabolismo , Pele/metabolismo , Trifosfato de Adenosina/imunologia , Animais , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/genética , Sistema Enzimático do Citocromo P-450/genética , Imidazóis/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/imunologia , Receptores Purinérgicos P2X7/genética , Ácido Retinoico 4 Hidroxilase , Pele/imunologia , Pele/microbiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Tretinoína/imunologia
12.
BMC Public Health ; 23(1): 1051, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264375

RESUMO

BACKGROUND: The 95-95-95 UNAIDS global strategy was adapted to end the AIDS epidemic by 2030. The target is based on the premise that early detection of HIV-infected persons and linking them to treatment regardless of their CD4 counts will lead to sustained viral suppression. HIV testing strategies to increase uptake of testing in Western and Central Africa remain inadequate. Hence, a high proportion of people living with HIV in this region do not know their status. This report describes the implementation of a community based multi-disease health screening (also known as "Know Your Status" -KYS), as part of basic science research, in a way that contributed to achieving public health goals. METHODS: A community based multi-disease health screening was conducted in 7 communities within the Eastern region of Ghana between November 2017 and April 2018, to recruit and match HIV seronegative persons to HIV seropositive persons in a case-control HIV gut microbiota study. Health assessments included blood pressure, body mass index, blood sugar, Hepatitis B virus, syphilis, and HIV testing for those who consented. HIV seronegative participants who consented were consecutively enrolled in an ongoing HIV gut microbiota case-control study. Descriptive statistics (percentages) were used to analyze data. RESULTS: Out of 738 people screened during the exercise, 700 consented to HIV testing and 23 (3%) were HIV positive. Hepatitis B virus infection was detected in 4% (33/738) and Syphilis in 2% (17/738). Co-infection of HIV and HBV was detected in 4 persons. The HIV prevalence of 3% found in these communities is higher than both the national prevalence of 1.7% and the Eastern Regional prevalence of 2.7 in 2018. CONCLUSION: Community based multi-disease health screening, such as the one undertaken in our study could be critical for identifying HIV infected persons from the community and linking them to care. In the case of HIV, it will greatly contribute to achieving the first two 95s and working towards ending AIDS by 2030.


Assuntos
Infecções por HIV , Programas de Rastreamento , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Diagnóstico Precoce , Prevalência , Continuidade da Assistência ao Paciente , Programas de Rastreamento/métodos , Hepatite B/diagnóstico , Sífilis/diagnóstico , Estudos Transversais , Humanos , Masculino , Feminino , Adulto , Serviços de Saúde Comunitária , Teste de HIV , Coinfecção/epidemiologia , Gana/epidemiologia
13.
Gastroenterology ; 160(6): 2089-2102.e12, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577875

RESUMO

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridioides difficile infection (rCDI). However, the overall mechanisms underlying FMT success await comprehensive elucidation, and the safety of FMT has recently become a serious concern because of the occurrence of drug-resistant bacteremia transmitted by FMT. We investigated whether functional restoration of the bacteriomes and viromes by FMT could be an indicator of successful FMT. METHODS: The human intestinal bacteriomes and viromes from 9 patients with rCDI who had undergone successful FMT and their donors were analyzed. Prophage-based and CRISPR spacer-based host bacteria-phage associations in samples from recipients before and after FMT and in donor samples were examined. The gene functions of intestinal microorganisms affected by FMT were evaluated. RESULTS: Metagenomic sequencing of both the viromes and bacteriomes revealed that FMT does change the characteristics of intestinal bacteriomes and viromes in recipients after FMT compared with those before FMT. In particular, many Proteobacteria, the fecal abundance of which was high before FMT, were eliminated, and the proportion of Microviridae increased in recipients. Most temperate phages also behaved in parallel with the host bacteria that were altered by FMT. Furthermore, the identification of bacterial and viral gene functions before and after FMT revealed that some distinctive pathways, including fluorobenzoate degradation and secondary bile acid biosynthesis, were significantly represented. CONCLUSIONS: The coordinated action of phages and their host bacteria restored the recipients' intestinal flora. These findings show that the restoration of intestinal microflora functions reflects the success of FMT.


Assuntos
Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Viroma , Adulto , Idoso , Bacteriófagos , Clostridioides difficile , Enterocolite Pseudomembranosa/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/virologia , Humanos , Masculino , Metagenômica , Microviridae , Pessoa de Meia-Idade , Proteobactérias , Viroma/genética
14.
Int Immunol ; 33(12): 767-774, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34436595

RESUMO

The oral and nasal cavities are covered by the mucosal epithelium that starts at the beginning of the aero-digestive tract. These mucosal surfaces are continuously exposed to environmental antigens including pathogens and allergens and are thus equipped with a mucosal immune system that mediates initial recognition of pathogenicity and initiates pathogen-specific immune responses. At the dawn of our scientific effort to explore the mucosal immune system, dental science was one of the major driving forces as it provided insights into the importance of mucosal immunity and its application for the control of oral infectious diseases. The development of mucosal vaccines for the prevention of dental caries was thus part of a novel approach that contributed to building the scientific foundations of the mucosal immune system. Since then, mucosal immunology and vaccines have gone on a scientific journey to become one of the major entities within the discipline of immunology. Here, we introduce our past and current efforts and future directions for the development of mucosal vaccines, specifically a rice-based oral vaccine (MucoRice) and a nanogel-based nasal vaccine, with the aim of preventing and controlling gastrointestinal and respiratory infectious diseases using the interdisciplinary fusion of mucosal immunology with agricultural science and biomaterial engineering, respectively.


Assuntos
Doenças Transmissíveis/imunologia , Imunidade nas Mucosas/imunologia , Vacinas/imunologia
15.
BMC Genomics ; 22(1): 59, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468052

RESUMO

BACKGROUND: We have previously developed a rice-based oral vaccine against cholera diarrhea, MucoRice-CTB. Using Agrobacterium-mediated co-transformation, we produced the selection marker-free MucoRice-CTB line 51A, which has three copies of the cholera toxin B subunit (CTB) gene and two copies of an RNAi cassette inserted into the rice genome. We determined the sequence and location of the transgenes on rice chromosomes 3 and 12. The expression of alpha-amylase/trypsin inhibitor, a major allergen protein in rice, is lower in this line than in wild-type rice. Line 51A was self-pollinated for five generations to fix the transgenes, and the seeds of the sixth generation produced by T5 plants were defined as the master seed bank (MSB). T6 plants were grown from part of the MSB seeds and were self-pollinated to produce T7 seeds (next seed bank; NSB). NSB was examined and its whole genome and proteome were compared with those of MSB. RESULTS: We re-sequenced the transgenes of NSB and MSB and confirmed the positions of the three CTB genes inserted into chromosomes 3 and 12. The DNA sequences of the transgenes were identical between NSB and MSB. Using whole-genome sequencing, we compared the genome sequences of three NSB with three MSB samples, and evaluated the effects of SNPs and genomic structural variants by clustering. No functionally important mutations (SNPs, translocations, deletions, or inversions of genic regions on chromosomes) between NSB and MSB samples were detected. Analysis of salt-soluble proteins from NSB and MSB samples by shot-gun MS/MS detected no considerable differences in protein abundance. No difference in the expression pattern of storage proteins and CTB in mature seeds of NSB and MSB was detected by immuno-fluorescence microscopy. CONCLUSIONS: All analyses revealed no considerable differences between NSB and MSB samples. Therefore, NSB can be used to replace MSB in the near future.


Assuntos
Vacinas contra Cólera , Oryza , Toxina da Cólera/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Proteômica , Banco de Sementes , Espectrometria de Massas em Tandem
16.
Int Immunol ; 32(2): 133-141, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630178

RESUMO

Accumulating evidence has revealed that lymphoid tissue-resident commensal bacteria (e.g. Alcaligenes spp.) survive within dendritic cells. We extended our previous study by investigating microbes that persistently colonize colonic macrophages. 16S rRNA-based metagenome analysis using DNA purified from murine colonic macrophages revealed the presence of Stenotrophomonas maltophilia. The in situ intracellular colonization by S. maltophilia was recapitulated in vitro by using bone marrow-derived macrophages (BMDMs). Co-culture of BMDMs with clinically isolated S. maltophilia led to increased mitochondrial respiration and robust IL-10 production. We further identified a 25-kDa protein encoded by the gene assigned as smlt2713 (recently renamed as SMLT_RS12935) and secreted by S. maltophilia as the factor responsible for enhanced IL-10 production by BMDMs. IL-10 production is critical for maintenance of the symbiotic condition, because intracellular colonization by S. maltophilia was impaired in IL-10-deficient BMDMs, and smlt2713-deficient S. maltophilia failed to persistently colonize IL-10-competent BMDMs. These findings indicate a novel commensal network between colonic macrophages and S. maltophilia that is mediated by IL-10 and smlt2713.


Assuntos
Macrófagos/imunologia , Stenotrophomonas maltophilia/imunologia , Animais , Técnicas de Cocultura , Feminino , Homeostase/imunologia , Interleucina-10/deficiência , Interleucina-10/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID
17.
Int Immunol ; 32(4): 243-258, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31858119

RESUMO

Secretory immunoglobulin A (SIgA), the most abundant antibody isotype in the body, maintains a mutual relationship with commensal bacteria and acts as a primary barrier at the mucosal surface. Colonization by commensal bacteria induces an IgA response, at least partly through a T-cell-independent process. However, the mechanism underlying the commensal-bacteria-induced T-cell-independent IgA response has yet to be fully clarified. Here, we show that commensal-bacteria-derived butyrate promotes T-cell-independent IgA class switching recombination (CSR) in the mouse colon. Notably, the butyrate concentration in human stools correlated positively with the amount of IgA. Butyrate up-regulated the production of transforming growth factor ß1 and all-trans retinoic acid by CD103+CD11b+ dendritic cells, both of which are critical for T-cell-independent IgA CSR. This effect was mediated by G-protein-coupled receptor 41 (GPR41/FFA3) and GPR109a/HCA2, and the inhibition of histone deacetylase. The butyrate-induced IgA response reinforced the colonic barrier function, preventing systemic bacterial dissemination under inflammatory conditions. These observations demonstrate that commensal-bacteria-derived butyrate contributes to the maintenance of the gut immune homeostasis by facilitating the T-cell-independent IgA response in the colon.


Assuntos
Butiratos/farmacologia , Colo/efeitos dos fármacos , Imunoglobulina A/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Células Cultivadas , Técnicas de Cocultura , Colo/imunologia , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Switching de Imunoglobulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Linfócitos T/imunologia
18.
Mol Pharm ; 18(4): 1582-1592, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621107

RESUMO

We previously developed a safe and effective nasal vaccine delivery system using a self-assembled nanosized hydrogel (nanogel) made from a cationic cholesteryl pullulan. Here, we generated three pneumococcal surface protein A (PspA) fusion antigens as a universal pneumococcal nasal vaccine and then encapsulated each PspA into a nanogel and mixed the three resulting monovalent formulations into a trivalent nanogel-PspA formulation. First, to characterize the nanogel-PspA formulations, we used native polyacrylamide gel electrophoresis (PAGE) to determine the average number of PspA molecules encapsulated per nanogel molecule. Second, we adopted two methods-a densitometric method based on lithium dodecyl sulfate (LDS)-PAGE and a biologic method involving sandwich enzyme-linked immunosorbent assay (ELISA)-to determine the PspA content in the nanogel formulations. Third, treatment of nanogel-PspA formulations by adding methyl-ß-cyclodextrin released each PspA in its native form, as confirmed through circular dichroism (CD) spectroscopy. However, when nanogel-PspA formulations were heat-treated at 80 °C for 16 h, CD spectroscopy showed that each PspA was released in a denatured form. Fourth, we confirmed that the nanogel-PspA formulations were internalized into nasal mucosa effectively and that each PspA was gradually released from the nanogel in epithelial cells in mice. Fifth, LDS-PAGE densitometry and ELISA both indicated that the amount of trivalent PspA was dramatically decreased in the heat-treated nanogel compared with that before heating. When mice were immunized nasally using the heat-treated formulation, the immunologic activity of each PspA was dramatically reduced compared with that of the untreated formulation; in both cases, the immunologic activity correlated well with the content of each PspA as determined by LDS-PAGE densitometry and ELISA. Finally, we confirmed that the trivalent nanogel-PspA formulation induced equivalent titers of PspA-specific serum IgG and mucosal IgA Abs in immunized mice. These results show that the specification methods we developed effectively characterized our nanogel-based trivalent PspA nasal vaccine formulation.


Assuntos
Proteínas de Bactérias/administração & dosagem , Higroscópicos/química , Nanogéis/química , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Administração Intranasal , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/farmacocinética , Liberação Controlada de Fármacos , Feminino , Glucanos/química , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Mucosa Nasal/metabolismo , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/genética , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/farmacocinética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , beta-Ciclodextrinas/química
19.
Biosci Biotechnol Biochem ; 85(10): 2137-2144, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34297057

RESUMO

Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


Assuntos
Organoides , Células Epiteliais , Humanos , Intestinos
20.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805523

RESUMO

The intestinal epithelium serves as a dynamic barrier to protect the host tissue from exposure to a myriad of inflammatory stimuli in the luminal environment. Intestinal epithelial cells (IECs) encompass differentiated and specialized cell types that are equipped with regulatory genes, which allow for sensing of the luminal environment. Potential inflammatory cues can instruct IECs to undergo a diverse set of phenotypic alterations. Aging is a primary risk factor for a variety of diseases; it is now well-documented that aging itself reduces the barrier function and turnover of the intestinal epithelium, resulting in pathogen translocation and immune priming with increased systemic inflammation. In this study, we aimed to provide an effective epigenetic and regulatory outlook that examines age-associated alterations in the intestines through the profiling of microRNAs (miRNAs) on isolated mouse IECs. Our microarray analysis revealed that with aging, there is dysregulation of distinct clusters of miRNAs that was present to a greater degree in small IECs (22 miRNAs) compared to large IECs (three miRNAs). Further, miRNA-mRNA interaction network and pathway analyses indicated that aging differentially regulates key pathways between small IECs (e.g., toll-like receptor-related cascades) and large IECs (e.g., cell cycle, Notch signaling and small ubiquitin-related modifier pathway). Taken together, current findings suggest novel gene regulation pathways by epithelial miRNAs in aging within the gastrointestinal tissues.


Assuntos
Envelhecimento/fisiologia , Células Epiteliais/fisiologia , Mucosa Intestinal/citologia , MicroRNAs/fisiologia , Animais , Simulação por Computador , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Intestino Grosso/citologia , Intestino Delgado/citologia , Camundongos Endogâmicos C57BL , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA