Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Cell Rep ; 40(3): 479-489, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386962

RESUMO

KEY MESSAGE: Microarray and genetic analyses reveal that ZTL induces the expression of genes related to auxin synthesis, thereby promoting hypocotyl elongation. ZTL is a blue-light receptor that possesses a light-oxygen-voltage-sensing (LOV) domain, an F-box motif, and a kelch repeat domain. ZTL promotes hypocotyl elongation under high temperature (28 °C) in Arabidopsis thaliana; however, the mechanism of this regulation is unknown. Here, we divided seedlings into hypocotyls and upper aerial parts, and performed microarray analyses. In hypocotyl, 1062 genes were down-regulated in ztl mutants (ztl-3 and ztl-105) compared with wild type; some of these genes encoded enzymes involved in cell wall modification, consistent with reduced hypocotyl elongation. In upper aerial parts, 1038 genes were down-regulated in the ztl mutants compared with wild type; these included genes involved in auxin synthesis and auxin response. Furthermore, the expression of the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) gene, which encodes a transcription factor known to positively regulate YUCCA genes (YUCs), was also decreased in the ztl mutants. Genetic analysis revealed that overexpression of PIF4 and YUC8 could restore the suppressed hypocotyl length in the ztl mutants. Our results suggest that ZTL induces expression of YUC8 via PIF4 in upper aerial parts and promotes hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Oxigenases de Função Mista/genética , Arabidopsis/crescimento & desenvolvimento , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Mutação , Fitocromo B/genética , Componentes Aéreos da Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Plântula/genética , Plântula/crescimento & desenvolvimento
2.
Plant Cell Rep ; 35(2): 455-67, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26601822

RESUMO

KEY MESSAGE: Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2). LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Rep ; 34(5): 843-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25627253

RESUMO

KEY MESSAGE: The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Desidratação , Expressão Gênica , Genes Reporter , Análise em Microsséries , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/fisiologia
4.
Curr Biol ; 33(23): 5121-5131.e6, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37977139

RESUMO

Land plants undergo indeterminate growth by the activity of meristems in both gametophyte (haploid) and sporophyte (diploid) generations. In the sporophyte of the flowering plant Arabidopsis thaliana, the apical meristems are located at the shoot and root tips in which a number of regulatory gene homologs are shared for their development, implying deep evolutionary origins. However, little is known about their functional conservation with gametophytic meristems in distantly related land plants such as bryophytes, even though genomic studies have revealed that the subfamily-level diversity of regulatory genes is mostly conserved throughout land plants. Here, we show that a NAM/ATAF/CUC (NAC) domain transcription factor, JINGASA (MpJIN), acts downstream of CLAVATA3 (CLV3)/ESR-related (CLE) peptide signaling and controls stem cell behavior in the gametophytic shoot apical meristem of the liverwort Marchantia polymorpha. In the meristem, strong MpJIN expression was associated with the periclinal cell division at the periphery of the stem cell zone (SCZ), whereas faint MpJIN expression was found at the center of the SCZ. Time course observation indicates that the MpJIN-negative cells are lost from the SCZ and respecified de novo at two separate positions during the dichotomous branching event. Consistently, the induction of MpJIN results in ectopic periclinal cell division in the SCZ and meristem termination. Based on the comparative expression data, we speculate that the function of JIN/FEZ subfamily genes was shared among the shoot apical meristems in the gametophyte and sporophyte generations in early land plants but was lost in certain lineages, including the flowering plant A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Meristema/metabolismo , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Biológica , Arabidopsis/metabolismo , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
5.
Plant J ; 67(4): 608-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21518052

RESUMO

LOV KELCH PROTEIN2 (LKP2), ZEITLUPE (ZTL)/LOV KELCH PROTEIN1 (LKP1) and FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1) constitute a family of Arabidopsis F-box proteins that regulate the circadian clock. Over-expression of LKP2 or ZTL causes arrhythmicity of multiple clock outputs under constant light and in constant darkness. Here, we show the significance of LKP2 and ZTL in the photoperiodic control of flowering time in Arabidopsis. In plants over-expressing LKP2, CO and FT expression was down-regulated under long-day conditions. LKP2 and ZTL physically interacted with FKF1, which was recruited from the nucleus into cytosolic speckles. LKP2 and ZTL inhibited the interaction of FKF1 with CYCLING DOF FACTOR 1, a ubiquitination substrate for FKF1 that is localized in the nucleus. The Kelch repeat regions of LKP2 and ZTL were sufficient for their physical interaction with FKF1 and translocation of FKF1 to the cytoplasm. Over-expression of LKP2 Kelch repeats induced late flowering under long-day conditions. lkp2 ztl double mutant plants flowered earlier than wild-type plants under short-day (non-inductive) conditions, and both CO and FT expression levels were up-regulated in the double mutant plants. The early flowering of lkp2 ztl was dependent on FKF1. LKP2, ZTL or both affected the accumulation of FKF1 protein during the early light period. These results indicate that an important role of LKP2 and ZTL in the photoperiodic pathway is repression of flowering under non-inductive conditions, and this is dependent on FKF1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Regulação da Expressão Gênica de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulação para Baixo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/genética , Flores/fisiologia , Teste de Complementação Genética , Fenótipo , Fotoperíodo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/ultraestrutura , Deleção de Sequência
6.
Front Plant Sci ; 12: 657548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927741

RESUMO

Growth and development of land plants are controlled by CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) family of peptide hormones. In contrast to the genetic diversity of CLE family in flowering plants, the liverwort Marchantia polymorpha possesses a minimal set of CLE, MpCLE1(TDIF homolog), and MpCLE2 (CLV3 homolog). MpCLE1 and MpCLE2 peptides exert distinct function at the apical meristem of M. polymorpha gametophyte via specific receptors, MpTDIF RECEPTOR (MpTDR) and MpCLAVATA1 (MpCLV1), respectively, both belonging to the subclass XI of leucine-rich repeat receptor-like kinases (LRR-RLKs). Biochemical and genetic studies in Arabidopsis have shown that TDR/PXY family and CLV1/BAM family recognize the CLE peptide ligand in a heterodimeric complex with a member of subclass-II coreceptors. Here we show that three LRR-RLK genes of M. polymorpha are classified into subclass II, representing three distinct subgroups evolutionarily conserved in land plants. To address the involvement of subclass-II coreceptors in M. polymorpha CLE signaling, we performed molecular genetic analysis on one of them, MpCLAVATA3 INSENSITIVE RECEPTOR KINASE (MpCIK). Two knockout alleles for MpCIK formed narrow apical meristems marked by prom MpYUC2:GUS marker, which were not expanded by MpCLE2 peptide treatment, phenocopying Mpclv1. Loss of sensitivity to MpCLE2 peptide was also observed in gemma cup formation in both Mpclv1 and Mpcik. Biochemical analysis using a Nicotiana benthamiana transient expression system revealed weak association between MpCIK and MpCLV1, as well as MpCIK and MpTDR. While MpCIK may also participate in MpCLE1 signaling, our data show that the conserved CLV3-CLV1-CIK module functions in M. polymorpha, controlling meristem activity for development and organ formation for asexual reproduction.

7.
Proc Natl Acad Sci U S A ; 104(49): 19625-30, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18003911

RESUMO

A blue light (BL) receptor was discovered in stramenopile algae Vaucheria frigida (Xanthophyceae) and Fucus distichus (Phaeophyceae). Two homologs were identified in Vaucheria; each has one basic region/leucine zipper (bZIP) domain and one light-oxygen-voltage (LOV)-sensing domain. We named these chromoproteins AUREOCHROMEs (AUREO1 and AUREO2). AUREO1 binds flavin mononucleotide via its LOV domain and forms a 390-nm-absorbing form, indicative of formation of a cysteinyl adduct to the C(4a) carbon of the flavin mononucleotide upon BL irradiation. The adduct decays to the ground state in approximately 5 min. Its bZIP domain binds the target sequence TGACGT. The AUREO1 target binding was strongly enhanced by BL treatment, implying that AUREO1 functions as a BL-regulated transcription factor. The function of AUREO1 as photoreceptor for BL-induced branching is elucidated through RNAi experiments. RNAi of AUREO2 unexpectedly induces sex organ primordia instead of branches, implicating AUREO2 as a subswitch to initiate development of a branch, but not a sex organ. AUREO sequences are also found in the genome of the marine diatom Thalassiosira pseudonana (Bacillariophyceae), but are not present in green plants. AUREOCHROME therefore represents a BL receptor in photosynthetic stramenopiles.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Fucus/crescimento & desenvolvimento , Morfogênese , Phaeophyceae/crescimento & desenvolvimento , Células Fotorreceptoras/fisiologia , Sequência de Aminoácidos , Diatomáceas/genética , Fucus/genética , Regulação da Expressão Gênica , Dados de Sequência Molecular , Morfogênese/genética , Phaeophyceae/genética , Células Fotorreceptoras/química , Células Fotorreceptoras/efeitos dos fármacos , Estrutura Terciária de Proteína , Interferência de RNA , Transcrição Gênica
8.
Curr Biol ; 30(19): 3833-3840.e4, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32822612

RESUMO

A key innovation in land plants was the evolution of meristems with stem cells possessing multiple cutting faces (division planes) from which three-dimensional growth is derived in both haploid (gametophyte) and diploid (sporophyte) generations [1-3]. Within each meristem exists a pool of stem cells that must be maintained at a relatively constant size for development to occur appropriately [4-6]. In flowering plants, stem cells of the diploid generation are maintained by CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptide signaling [7, 8]. In the liverwort Marchantia polymorpha, the haploid body undergoes dichotomous branching, an ancestral characteristic of growth derived from the meristem, in which two equivalent body axes are developed via stem cell division, regulated by unknown molecular mechanisms. We show here that in M. polymorpha, treatment with MpCLE2/CLAVATA3 (CLV3) peptide resulted in the accumulation of undifferentiated cells, marked by MpYUC2 expression, in the apical meristem. Removal of MpCLE2 peptide resulted in multichotomous branching from the accumulated cells. Genetic analysis demonstrated that the CLAVATA1 (MpCLV1) receptor, but not the WUSCHEL-related HOMEOBOX (MpWOX) transcription factor, is responsible for MpCLE2 peptide signaling. In the apical meristem, MpCLV1 was expressed broadly in the central region, including the MpYUC2-positive area, whereas MpCLE2 was expressed in a largely complementary manner compared to MpYUC2, suggesting MpCLE2 mediates local cell-to-cell communication. CLV3/CLE peptide, a negative regulator of diploid stem cells in flowering plants, acts as a haploid stem cell-promoting signal in M. polymorpha, implicating a critical role for this pathway in the evolution of body plan in land plants.


Assuntos
Diferenciação Celular/fisiologia , Marchantia/genética , Marchantia/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Embriófitas/genética , Regulação da Expressão Gênica de Plantas/genética , Células Germinativas Vegetais/metabolismo , Meristema/genética , Meristema/metabolismo , Peptídeos/genética , Peptídeos/farmacologia , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
9.
Plant Signal Behav ; 10(5): e998540, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039487

RESUMO

Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the flavin-binding KELCH repeat F-box 1 / LOV KELCH protein 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Hipocótilo/crescimento & desenvolvimento , Temperatura Alta
10.
Plant Signal Behav ; 10(12): e1071752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237185

RESUMO

Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , DNA Bacteriano/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Hipocótilo/genética , Ácidos Indolacéticos/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Hipocótilo/efeitos dos fármacos , Mutagênese Insercional/genética , Plântula/efeitos dos fármacos , Plântula/genética
12.
FEBS Lett ; 584(11): 2393-6, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20399775

RESUMO

Potato tuberization is induced under short-day conditions and repressed under long-day conditions. In this study, we produced transgenic potatoes overexpressing either Arabidopsis thaliana LOV KELCH PROTEIN 2 (35S:LKP2) or CONSTANS fused with a transcription repressor motif (35S:CO-Rep). In an in vitro tuberization assay, the average number of tubers per plant was greater in 35S:LKP2 plants than in vector-control plants, but lower in 35S:CO-Rep plants. Under long-day conditions in soil, all 35S:LKP2 plants tuberized, whereas most control plants and 35S:CO-Rep plants did not. These results suggest genes involved in flowering time regulation can be used to control potato tuber production.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenômenos Bioquímicos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Arabidopsis/fisiologia
13.
J Plant Physiol ; 166(12): 1307-1313, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19307045

RESUMO

The SMALL ACIDIC PROTEIN 2 (SMAP2) gene is a paralogue of the SMAP1 gene that mediates the response to the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in the root of Arabidopsis thaliana. Their encoded proteins, SMAP1 and SMAP2, are similar in calculated molecular weight and isoelectric point, and in having a highly conserved phenylalanine and aspartic acid-rich domain. RNA expression analysis showed that SMAP1 mRNA is present throughout the plant body while SMAP2 mRNA is restricted to siliques and anthers. Over-expression of the SMAP2 gene, as well as SMAP1, by 35S cauliflower mosaic virus promoter restored sensitivity to 2,4-D in the 2,4-D-resistant mutant, aar1, which is defective in SMAP1 function. The results suggest that SMAP2 has an ability to mediate the 2,4-D response and is expressed only in restricted tissues.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Genes de Plantas , Ácidos Indolacéticos/farmacologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
14.
Plant Signal Behav ; 3(11): 966-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704421

RESUMO

The light, oxygen or voltage (LOV) domain belongs to the Per-ARNT-Sim (PAS) superfamily of domains, and functions with the flavin chromophore as a module for sensing blue light in plants and fungi. The Arabidopsis thaliana PAS/LOV proteins (PLPs), of unknown function, possess an N-terminal PAS domain and a C-terminal LOV domain. Our recent analysis using yeast two-hybrid and Escherichia coli protein production systems reveals that the interactions of Arabidopsis PLPs with several proteins diminish under blue light illumination and that the PLP LOV domain may bind to a flavin chromophore. These results suggest that PLP functions as a blue light receptor. Homologs of PLP exist in rice, tomato and moss. The LOV domains of these PLP homologs form a distinct group in phylogenetic analysis. These facts suggest that PLP belongs to a new class of plant blue light receptor.

15.
J Plant Res ; 121(1): 97-105, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17982713

RESUMO

The light, oxygen, or voltage (LOV) domain that belongs to the Per-ARNT-Sim (PAS) domain superfamily is a blue light sensory module. The Arabidopsis thaliana PAS/LOV PROTEIN (PLP) gene encodes three putative blue light receptor proteins, PLPA, PLPB, and PLPC, because of its mRNA splicing variation. PLPA and PLPB each contain one PAS domain at the N-terminal region and one LOV domain at the C-terminal region, while the LOV domain is truncated in PLPC. RNA gel blot analysis showed that PLP mRNA was markedly expressed after exposure to salt or dehydration stress. Yeast two-hybrid screening led to the isolation of VITAMIN C DEFECTIVE 2 (VTC2), VTC2-LIKE (VTC2L), and BEL1-LIKE HOMEODOMAIN 10 proteins (BLH10A and BLH10B) as PLP-interacting proteins. The molecular interaction of PLPA with VTC2L, BLH10A or BLH10B, and that of PLPB with VTC2L were diminished when yeasts were grown under blue light illumination. Furthermore, the possible binding of flavin chromophore to PLPA and PLPB was demonstrated. These results imply that the LOV domain of PLPA and PLPB functions as a blue light sensor, and suggest the applicability of these interactions to blue light-dependent switching in transcriptional regulation in yeast or other organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Ligação Proteica/efeitos da radiação , Isoformas de Proteínas , Estrutura Terciária de Proteína
16.
Plant Cell Rep ; 26(6): 815-21, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17219103

RESUMO

The transcription factor CONSTANS (CO) plays a central role in the photoperiod pathway by integrating the circadian clock and light signals into a control for flowering time. CO induces flowering locus T (FT) and suppressor of overexpression of CO 1 (SOC1) expression, and thereby promotes flowering. The ethylene-responsive element-binding factor associated amphiphilic repression (EAR) motif was used to construct a CONSTANS-EAR motif repressor gene (CO-Rep), which was overexpressed in Arabidopsis under the control of the Cauliflower mosaic virus 35S promoter in order to test its potential for flowering time regulation under inductive long day conditions. Morphological abnormalities in the root and cotyledon formation, and dwarfness were frequently seen in the transgenic plants, suggesting that the proper timing, location, and/or level of CO-Rep expression are important for its application. In morphologically normal CO-Rep plants, both bolting and flowering times under inductive long day conditions were twofold greater than in controls. As a result of the delay in flowering, rosette leaf number at bolting, and rosette and cauline leaf number at flowering increased significantly in CO-Rep plants. RT-PCR analysis demonstrated that FT expression was greatly reduced in the CO-Rep plants, while endogenous CO and SOC1 expression levels were not markedly affected. Conservation of CO among a diverse range of plant species, and its involvement in a variety of photoperiodic responses including flowering, suggests a high potential for use of CO-Rep to manipulate such responses in an agronomically desirable manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Quimera , Proteínas de Ligação a DNA/genética , Flores/crescimento & desenvolvimento , Fatores de Transcrição/genética , Agrobacterium tumefaciens/fisiologia , Arabidopsis/fisiologia , Sequência de Bases , Primers do DNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Bacteriana
17.
Plant Physiol ; 145(3): 773-85, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17905859

RESUMO

To isolate novel auxin-responsive mutants in Arabidopsis (Arabidopsis thaliana), we screened mutants for root growth resistance to a putative antiauxin, p-chlorophenoxyisobutyric acid (PCIB), which inhibits auxin action by interfering the upstream auxin-signaling events. Eleven PCIB-resistant mutants were obtained. Genetic mapping indicates that the mutations are located in at least five independent loci, including two known auxin-related loci, TRANSPORT INHIBITOR RESPONSE1 and Arabidopsis CULLIN1. antiauxin-resistant mutants (aars) aar3-1, aar4, and aar5 were also resistant to 2,4-dichlorophenoxyacetic acid as shown by a root growth assay. Positional cloning of aar3-1 revealed that the AAR3 gene encodes a protein with a domain of unknown function (DUF298), which has not previously been implicated in auxin signaling. The protein has a putative nuclear localization signal and shares homology with the DEFECTIVE IN CULLIN NEDDYLATION-1 protein through the DUF298 domain. The results also indicate that PCIB can facilitate the identification of factors involved in auxin or auxin-related signaling.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ácido Clofíbrico/farmacologia , Raízes de Plantas/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Mapeamento Cromossômico , Cromossomos de Plantas , Clonagem Molecular , Proteínas Culina , Proteínas F-Box , Resistência a Herbicidas , Herbicidas/farmacologia , Dados de Sequência Molecular , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Receptores de Superfície Celular
18.
Plant Cell Physiol ; 46(8): 1340-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15937324

RESUMO

LOV KELCH PROTEIN2 (LKP2) is an F-box protein that has been postulated to function centrally, or near to the circadian clock oscillator. As a first step to determine which proteins act as substrates of LKP2, yeast two-hybrid screening was performed using LKP2 as bait, and two interaction factors, Di19 and COL1, were isolated. The transiently expressed Di19-GUS fusion protein was localized in the nucleus of Arabidopsis petiole cells. COL1 and other CO/COL family proteins could also interact with LKP1/ZTL, LKP2 or FKF1. The LKP2-binding site in CO or COL1 was near the center of each protein. The CCT motif in CO or COL1 was not sufficient for interaction with LKP2. LKP2 recognized CO with F-box and kelch repeat-containing regions, while it recognized COL1 with an LOV domain. When LKP2 was fused with cyan fluorescent proein (CFP) and transiently expressed in onion epidermal cells, CFP-LKP2 signals were localized in the nucleus and cytosol. Both yellow fluorescent protein (YFP)-CO and YFP-COL1 were located in the nucleus, forming nuclear bodies when they were transiently expressed. However, co-expression of CFP-LKP2 with YFP fused to either CO or COL1 resulted in the recruitment of CFP-LKP2 in nuclear bodies. Furthermore, the CFP-LKP2 and YFP-CO signals co-localized with signals for pU2B''-mRFP, which is a marker for Cajal bodies. These results suggest the possibility that LKP2 functions with CO/COL family proteins in the nuclear bodies.


Assuntos
Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Sequência de Bases , Núcleo Celular/ultraestrutura , Primers do DNA , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Técnicas do Sistema de Duplo-Híbrido
19.
Plant Physiol ; 135(3): 1388-97, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15247376

RESUMO

Phototropin is the blue-light receptor that mediates phototropism, chloroplast movement, and stomatal opening in Arabidopsis. Blue and red light induce chloroplast movement in the moss Physcomitrella patens. To study the photoreceptors for chloroplast movement in P. patens, four phototropin genes (PHOTA1, PHOTA2, PHOTB1, and PHOTB2) were isolated by screening cDNA libraries. These genes were classified into two groups (PHOTA and PHOTB) on the basis of their deduced amino acid sequences. Then phototropin disruptants were generated by homologous recombination and used for analysis of chloroplast movement. Data revealed that blue light-induced chloroplast movement was mediated by phototropins in P. patens. Both photA and photB groups were able to mediate chloroplast avoidance, as has been reported for Arabidopsis phot2, although the photA group contributed more to the response. Red light-induced chloroplast movement was also significantly reduced in photA2photB1photB2 triple disruptants. Because the primary photoreceptor for red light-induced chloroplast movement in P. patens is phytochrome, phototropins may be downstream components of phytochromes in the signaling pathway. To our knowledge, this work is the first to show a function for the phototropin blue-light receptor in a response to wavelengths that it does not absorb.


Assuntos
Briófitas/efeitos dos fármacos , Briófitas/ultraestrutura , Cloroplastos/fisiologia , Flavoproteínas/fisiologia , Sequência de Bases , Briófitas/classificação , Briófitas/fisiologia , Cloroplastos/efeitos dos fármacos , Clonagem Molecular , Criptocromos , Primers do DNA , Flavoproteínas/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas/genética , Luz , Iluminação , Modelos Biológicos , Dados de Sequência Molecular , Movimento/efeitos dos fármacos , Movimento/fisiologia , Mutação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Proteínas Recombinantes/metabolismo
20.
Nature ; 421(6920): 287-90, 2003 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-12529647

RESUMO

Efficient photosynthesis is essential for plant survival. To optimize photosynthesis, plants have developed several photoresponses. Stems bend towards a light source (phototropism), chloroplasts move to a place of appropriate light intensity (chloroplast photorelocation) and stomata open to absorb carbon dioxide. These responses are mediated by the blue-light receptors phototropin 1 (phot1) and phototropin 2 (phot2) in Arabidopsis (refs 1-5). In some ferns, phototropism and chloroplast photorelocation are controlled by red light as well as blue light. However, until now, the photoreceptor mediating these red-light responses has not been identified. The fern Adiantum capillus-veneris has an unconventional photoreceptor, phytochrome 3 (phy3), which is a chimaera of the red/far-red light receptor phytochrome and phototropin. We identify here a function of phy3 for red-light-induced phototropism and for red-light-induced chloroplast photorelocation, by using mutational analysis and complementation. Because phy3 greatly enhances the sensitivity to white light in orienting leaves and chloroplasts, and PHY3 homologues exist among various fern species, this chimaeric photoreceptor may have had a central role in the divergence and proliferation of fern species under low-light canopy conditions.


Assuntos
Adiantum/fisiologia , Adiantum/efeitos da radiação , Cor , Luz , Células Fotorreceptoras/fisiologia , Células Fotorreceptoras/efeitos da radiação , Adiantum/genética , Genes de Plantas/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fototropismo/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA