RESUMO
The amphipathicity of the natively unstructured amyloid-beta (Abeta40) peptide may play an important role in its aggregation into beta-sheet rich fibrils, which is linked to the pathogenesis of Alzheimer's disease. Using the air/subphase interface as a model interface, we characterized Abeta's surface activity and its conformation, assembly, and morphology at the interface. Abeta readily adsorbed to the air/subphase interface to form a 20 A thick film and showed a critical micelle concentration of approximately 120 nM. Abeta adsorbed at the air/subphase exhibited in-plane ordering that gave rise to Bragg peaks in grazing-incidence x-ray diffraction measurements. Analysis of the peaks showed that the air/subphase interface induced Abeta to fold into a beta-sheet conformation and to self-assemble into approximately 100 A-sized ordered clusters. The formation of these clusters at the air/subphase interface was not affected by pH, salts, or the presence of sucrose or urea, which are known to stabilize or denature native proteins, suggesting that interface-driven Abeta misfolding and assembly are strongly favored. Furthermore, Abeta at the interface seeded the growth of fibrils in the bulk with a distinct morphology compared to those formed by homogeneous nucleation. Our results indicate that interface-induced Abeta misfolding may serve as a heterogeneous, nucleation-controlled aggregation mechanism for Abeta fibrillogenesis in vivo.
Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Amiloide/química , Fragmentos de Peptídeos/farmacologia , Peptídeos/efeitos adversos , Dobramento de Proteína/efeitos dos fármacos , Deficiências na Proteostase/etiologia , Amiloide/efeitos adversos , Peptídeos beta-Amiloides/química , Precursor de Proteína beta-Amiloide , Sítios de Ligação , Dicroísmo Circular/métodos , Bicamadas Lipídicas/farmacologia , Microscopia de Força Atômica/métodos , Peptídeos/farmacologia , Nexinas de Proteases , Conformação Proteica , Receptores de Superfície Celular , Propriedades de SuperfícieRESUMO
Electroconvulsive therapy (ECT) is the most effective and fast-acting treatment for severe depression but associated with troublesome cognitive side-effects. Systemically administered erythropoietin (EPO) crosses the blood-brain-barrier and is a promising treatment for cognitive dysfunction in a wide array of neuropsychiatric and neurological disorders. In this study we trained rats to locate a submerged platform in a water maze and then subjected them to electroconvulsive stimulations (ECS, the rodent equivalent to ECT) and EPO treatment. We then analysed their ability to remember and relearn the location of the platform. In addition, we examined "wall-clinging" (thigmotaxis), a behavioural indicator of stress. ECS caused significant deficit in a probe trial administered after three weeks (nine stimulations) as well as one week (six stimulations) of treatment, indicative of induction of retrograde amnesia. ECS had no effect on relearning of the water maze task or performance in a subsequent probe trial. EPO treatment did not ameliorate the ECS-induced retrograde amnesia, but after nine ECS stimulations the animals that had received EPO relearned the position of the hidden platform faster than the animals that had not. We also found EPO to decrease "wall-clinging" behaviour, suggesting an effect of EPO on the stress response in rats. Thus, we establish the Morris Water Maze as a suitable model for ECS-induced memory loss in rats and provide some evidence for potential beneficial effects of EPO.
Assuntos
Disfunção Cognitiva/etiologia , Eletrochoque , Eritropoetina/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Animais , Disfunção Cognitiva/prevenção & controle , Masculino , Ratos Sprague-DawleyRESUMO
Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.
Assuntos
Produtos Biológicos/química , Proteínas Associadas a Surfactantes Pulmonares/química , Soroalbumina Bovina/química , Adsorção , Algoritmos , Animais , Bovinos , Elétrons , Modelos Químicos , Polietilenoglicóis/química , Pressão , Difração de Raios X , Raios XRESUMO
The key to functionalize of engineered molecularly nanometer thick films lies in the ability to reproducibly control their structure. A number of factors influence the film morphology of self-assembled films on solid or liquid surfaces, such as the structure of the molecules/particles, wetting, solvent hydrodynamics, and evaporation. An important example is the deposition of amphiphilic molecules from a volatile solution, self-assembled onto a water surface at monolayer coverage. Upon evaporation, a myriad of microscopic two-dimensional (2D) crystallites forms a ruptured film lying in random orientation on the surface, resulting in "2D powders." Here we present a general technique, employing linearly polarized laser pulses and varying solvent composition to influence the assembly of molecules such as poly-benzyl-L-glutamate and alamethicin on water surfaces, resulting in ultrathin molecular films with aligned regions that point in the same direction, though macroscopically separated. The experimental results are tentatively explained by a mechanism that is based on excluded volume forces and "kick model" for the effect of laser pulses to induce molecular rotation that eventually results in an aligned pattern when the system is at a collective state.
RESUMO
Mixed monolayers of the ganglioside G(M1) and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by G(M1) on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for G(M1) concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of G(M1) (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher G(M1) concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that G(M1) and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/G(M1) binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of G(M1) to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the G(M1) molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the G(M1) molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the G(M1) molecule.
Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Modelos Químicos , Simulação por Computador , Membranas Artificiais , Transição de Fase , Fosfolipídeos/química , Solubilidade , ViscosidadeRESUMO
The lipid membrane has been shown to mediate the fibrillogenesis and toxicity of Alzheimer's disease (AD) amyloid-beta (Abeta) peptide. Electrostatic interactions between Abeta40 and the phospholipid headgroup have been found to control the association and insertion of monomeric Abeta into lipid monolayers, where Abeta exhibited enhanced interactions with charged lipids compared with zwitterionic lipids. To elucidate the molecular-scale structural details of Abeta-membrane association, we have used complementary X-ray and neutron scattering techniques (grazing-incidence X-ray diffraction, X-ray reflectivity, and neutron reflectivity) in this study to investigate in situ the association of Abeta with lipid monolayers composed of either the anionic lipid 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or the cationic lipid 1,2-dipalmitoyl 3-trimethylammonium propane (DPTAP) at the air-buffer interface. We found that the anionic lipid DPPG uniquely induced crystalline ordering of Abeta at the membrane surface that closely mimicked the beta-sheet structure in fibrils, revealing an intriguing templated ordering effect of DPPG on Abeta. Furthermore, incubating Abeta with lipid vesicles containing the anionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) induced the formation of amyloid fibrils, confirming that the templated ordering of Abeta at the membrane surface seeded fibril formation. This study provides a detailed molecular-scale characterization of the early structural fluctuation and assembly events that may trigger the misfolding and aggregation of Abeta in vivo. Our results implicate that the adsorption of Abeta to anionic lipids, which could become exposed to the outer membrane leaflet by cell injury, may serve as an in vivo mechanism of templated-aggregation and drive the pathogenesis of AD.
Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Bicamadas Lipídicas/química , Adsorção , Ar , Peptídeos beta-Amiloides/ultraestrutura , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Fluorescência , Nêutrons , Propano/análogos & derivados , Propano/metabolismo , Compostos de Amônio Quaternário/metabolismo , Espalhamento de Radiação , Água , Raios XRESUMO
The role of zinc, an essential element for normal brain function, in the pathology of Alzheimer's disease (AD) is poorly understood. On one hand, physiological and genetic evidence from transgenic mouse models supports its pathogenic role in promoting the deposition of the amyloid beta-protein (Abeta) in senile plaques. On the other hand, levels of extracellular ("free") zinc in the brain, as inferred by the levels of zinc in cerebrospinal fluid, were found to be too low for inducing Abeta aggregation. Remarkably, the release of transient high local concentrations of zinc during rapid synaptic events was reported. The role of such free zinc pulses in promoting Abeta aggregation has never been established. Using a range of time-resolved structural and spectroscopic techniques, we found that zinc, when introduced in millisecond pulses of micromolar concentrations, immediately interacts with Abeta 1-40 and promotes its aggregation. These interactions specifically stabilize non-fibrillar pathogenic related aggregate forms and prevent the formation of Abeta fibrils (more benign species) presumably by interfering with the self-assembly process of Abeta. These in vitro results strongly suggest a significant role for zinc pulses in Abeta pathology. We further propose that by interfering with Abeta self-assembly, which leads to insoluble, non-pathological fibrillar forms, zinc stabilizes transient, harmful amyloid forms. This report argues that zinc represents a class of molecular pathogens that effectively perturb the self-assembly of benign Abeta fibrils, and stabilize harmful non-fibrillar forms.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Zinco/química , Encéfalo/metabolismo , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Modelos Químicos , Conformação Molecular , Peptídeos/química , Espalhamento de Radiação , Espectrofotometria/métodos , Fatores de Tempo , Difração de Raios XRESUMO
Cognitive dysfunction is a core feature in a range of neuropsychiatric disorders which reduces patients' workforce capacity - the largest socio-economic cost of these disorders. Nevertheless, there is no clinically available medical treatment with robust and enduring efficacy on cognitive deficits in most neuropsychiatric conditions. Recent research has shown that erythropoietin may have beneficial effects on cognitive dysfunction across neuropsychiatric disorders, including bipolar and unipolar disorders, schizophrenia, Parkinson's disease and multiple sclerosis.
Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Eritropoetina/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Eritropoetina/administração & dosagem , Humanos , Transtornos do Humor/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Esquizofrenia/tratamento farmacológicoRESUMO
Crystalline monolayers of octadecylsulfonate amphiphiles (C18S) separated by hydrophilic guanidinium (G) spacer molecules were formed at the air-water interface at a surface coverage that was consistent with that expected for a fully condensed monolayer self-assembled by hydrogen bonding between the G ions and the sulfonate groups. The surface pressure-area isotherms reflected reinforcement of this monolayer by hydrogen bonding between the G ions and the sulfonate groups, and grazing incidence X-ray diffraction (GIXD) measurements, performed in-situ at the air-water interface, revealed substantial tilt of the alkyl hydrophobes (t = 49 degrees with respect to the surface normal), which allowed the close packing of the C18 chains needed for a stable crystalline monolayer. This property contrasts with behavior observed previously for monolayers of hexadecylbiphenylsulfonate (C16BPS) and G, which only formed crystallites upon compression, accompanied by ejection of the G ions from the air-water interface. Upon compression to higher surface pressures, GIXD revealed that the highly tilted (G)C18S monolayer crystallites transformed to a self-interdigitated (G)C18S crystalline multilayer accompanied by a new crystalline monolayer phase with slightly tilted alkyl chains and disordered sulfonate headgroups. This transformation was dependent on the rate of compression, suggesting kinetic limitations for the "zipper-like" transformation from the crystalline monolayer to the self-interdigitated (G)C18S crystalline multilayer.
RESUMO
Surface sensitive X-ray techniques have been used to elucidate the structures of amphiphilic [2]rotaxane and dumbbell monolayers at the air/water interface. The [2]rotaxanes were found to adopt highly hydrated tilted and/or folded conformations on the water surface largely due to the hydrophilic nature of their tetracationic ring component. This conformation was less pronounced in monolayers of the dumbbell precursors. Increasing the surface pressure resulted in an expansion of [2]rotaxane monolayers in the vertical direction and decreased hydration.
RESUMO
N(epsilon)-stearoyl-lysine-ethyl-ester (C18-OE-Lys) operates as an efficient desymmetrizing agent for the generation of homochiral oligopeptides via a reaction catalyzed by silver ions in two-dimensional (2D) quasi-racemic crystallites of the corresponding thio-ester (C18-TE-Lys) self-assembled on water.
Assuntos
Aminoácidos/química , Oligopeptídeos/química , Transição de Fase , Compostos de Sulfidrila/química , Água/química , Esterificação , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Estrutura Molecular , Prata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estereoisomerismo , Difração de Raios XAssuntos
Lasers , Peptídeos/química , Água/química , Ar , Dimerização , Microscopia de Força AtômicaRESUMO
Two efficient synthetic routes to the first tetrathiafulvaleno-annelated porphyrins are reported. These novel porphyrin systems (see picture; Pe=pentyl) have been characterized by using a variety of techniques including EPR spectroscopy, cyclic voltammetry, and mass spectrometry. Langmuir-Blodgett films obtained from the porphyrins were used to carry out structural studies by using X-ray diffraction and atomic force microscopy.
RESUMO
Three new tris(dialkylamino)trioxatriangulenium (ATOTA+) salts rendered amphiphilic by attachment of two (5a x PF6 and 5b x PF6) or four (5c x PF6) n-decyl chains have been synthesized, and their Langmuir films have been studied by grazing incidence X-ray diffraction (GIXD). Compounds 5a x PF6 and 5b x PF6 both self-assemble into 2D-crystalline Langmuir monolayers, in which the planar triangular shaped carbenium ions form columnar aggregates segregated from the PF6- ions. The column width is found to be close to the width of the triangulenium moiety itself (approximately 17 angstroms), while the repeat distance along the columnar aggregates is only 3.45 angstroms, implicating a near cofacial columnar structure with only a small tilt of the planar carbenium ions relative to the columnar axis. A detailed Bragg rod analysis confirmed an 8-9 degrees tilt and inferred a large anisotropy in the smearing/thermal displacement along the pi-pi stacking and lamellar packing directions. Specular X-ray reflectivity (SXR) was used to confirm the model derived from the GIXD data and elucidate the average position of the disordered PF6- ions, showing that the majority of the anions are accommodated in the ATOTA+ layer rather than in the water subphase.
RESUMO
X-ray diffraction of sphingomyelin-dihydrocholesterol (SM-DChol) monolayers revealed short-ranged ( approximately 25 A) 2D ordering. These nanoclusters show two distinct regions: below the cusp point of the phase diagram (35 mol% DChol), a constant d spacing was observed; above the cusp, the d spacing increases linearly with DChol in accordance to Vegard's law for binary alloys. The components in this lipidic alloy are thus a 65ratio35 SM-DChol entity and excess DChol. Reflectivity data further support the emergence above the cusp of an uncomplexed DChol population with greater vertical mobility.
Assuntos
Colestanol/química , Nanoestruturas/química , Esfingomielinas/química , Fluidez de Membrana , Membranas Artificiais , Difração de Raios XRESUMO
The morphology of micrometer-sized beta-hematin crystals (synthetic malaria pigment) was determined by TEM images and diffraction, and by grazing incidence synchrotron X-ray diffraction at the air-water interface. The needle-like crystals are bounded by sharp {100} and {010} side faces, and capped by {011} and, to a lesser extent, by {001} end faces, in agreement with hemozoin (malaria pigment) crystals. The beta-hematin crystals grown in the presence of 10% chloroquine or quinine took appreciably longer to precipitate and tended to be symmetrically tapered toward both ends of the needle, due to stereoselective additive binding to {001} or {011} ledges. Evidence, but marginal, is presented that additives reduce crystal mosaic domain size along the needle axis, based on X-ray powder diffraction data. Coherent grazing exit X-ray diffraction suggests that the mosaic domains are smaller and less structurally stable than in pure crystals. IR-ATR and Raman spectra indicate molecular based differences due to a modification of surface and bulk propionic acid groups, following additive binding and a molecular rearrangement in the environment of the bulk sites poisoned by occluded quinoline. These results provided incentive to examine computationally whether hemozoin may be a target of antimalarial drugs diethylamino-alkoxyxanthones and artemisinin. A variation in activity of the former as a function of the alkoxy chain length is correlated with computed binding energy to {001} and {011} faces of beta-hematin. A model is proposed for artemisinin activity involving hemozoin nucleation inhibition via artemisinin-beta-hematin adducts bound to the principal crystal faces. Regarding nucleation of hemozoin inside the digestive vacuole of the malaria parasite, nucleation via the vacuole's membranous surface is proposed, based on a reported hemozoin alignment. As a test, a dibehenoyl-phosphatidylcholine monolayer transferred onto OTS-Si wafer nucleated far more beta-hematin crystals, albeit randomly oriented, than a reference OTS-Si.