RESUMO
Microbially induced CaCO3 precipitation (MICP) can give concrete self-healing properties. MICP agents are typically bacterial endospores which are coated into shelled granules, infused into expanded clay, or embedded into superabsorbent polymer (SAP). When small cracks appear in the cured concrete, the encapsulation is broken and the metabolic CO2 production from the germinated bacteria causes healing of the cracks by precipitation of CaCO3. Such systems are being tested empirically at large scales, but survival of endospores through preparation and application, as well as germination and growth kinetics of the germinated vegetative cells, remains poorly resolved. We encapsulated endospores of Bacillus subtilis and Bacillus alkalinitrilicus in crosslinked acrylamide-based SAP and quantified their germination, growth, and, in the case of B. alkalinitrilicus, CaCO3 precipitation potential. The endospores survived crosslinking and desiccation inside the polymer matrix. Microcalorimetry and microscopy showed that ~ 80% of the encapsulated endospores of both strains readily germinated after rehydration of freeze-dried SAP. Germinated cells grew into dense colonies of cells inside the SAP, and those of B. alkalinitrilicus calcified with up to 0.3 g CaCO3 produced per g desiccated SAP when incubated aerobically. Measurements by planar optodes indicated that the precipitation rates were inherently oxygen limited due to diffusional constraints, rather than limited by electron donor or Ca2+ availability. Such oxygen limitation will limit MICP in all water-saturated and oxygen-dependent systems, and MICP agents based on anaerobic bacteria, e.g., nitrate reducers, should be developed to broaden the applicability of bioactive self-healing concretes to wet and waterlogged environments.
Assuntos
Bacillus subtilis/metabolismo , Bacillus/metabolismo , Carbonato de Cálcio/metabolismo , Precipitação Química , Polímeros/química , Acrilamida/química , Bacillus/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Bactérias Aeróbias/crescimento & desenvolvimento , Bactérias Aeróbias/metabolismo , Fenômenos Bioquímicos , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Esporos Bacterianos/metabolismo , Água/metabolismoRESUMO
In polyextremophiles, i.e., microorganisms growing preferentially under multiple extremes, synergistic effects may allow growth when application of the same extremes alone would not. High hydrostatic pressure (HP) is rarely considered in studies of polyextremophiles, and its role in potentially enhancing tolerance to other extremes remains unclear. Here, we investigated the HP-temperature response in Clostridium paradoxum, a haloalkaliphilic moderately thermophilic endospore-forming bacterium, in the range of 50 to 70°C and 0.1 to 30 MPa. At ambient pressure, growth limits were extended from the previously reported 63°C to 70°C, defining C. paradoxum as an actual thermophile. Concomitant application of high HP and temperature compared to standard conditions (i.e., ambient pressure and 50°C) remarkably enhanced growth, with an optimum growth rate observed at 22 MPa and 60°C. HP distinctively defined C. paradoxum physiology, as at 22 MPa biomass, production increased by 75% and the release of fermentation products per cell decreased by >50% compared to ambient pressure. This metabolic modulation was apparently linked to an energy-preserving mechanism triggered by HP, involving a shift toward pyruvate as the preferred energy and carbon source. High HPs decreased cell damage, as determined by Syto9 and propidium iodide staining, despite no organic solute being accumulated intracellularly. A distinct reduction in carbon chain length of phospholipid fatty acids (PLFAs) and an increase in the amount of branched-chain PLFAs occurred at high HP. Our results describe a multifaceted, cause-and-effect relationship between HP and cell metabolism, stressing the importance of applying HP to define the boundaries for life under polyextreme conditions.IMPORTANCE Hydrostatic pressure (HP) is a fundamental parameter influencing biochemical reactions and cell physiology; however, it is less frequently applied than other factors, such as pH, temperature, and salinity, when studying polyextremophilic microorganisms. In particular, how HP affects microbial tolerance to other and multiple extremes remains unclear. Here, we show that under polyextreme conditions of high pH and temperature, Clostridium paradoxum demonstrates a moderately piezophilic nature as cultures grow to highest cell densities and most efficiently at a specific combination of temperature and HP. Our results highlight the importance of considering HP when exploring microbial physiology under extreme conditions and thus have implications for defining the limits for microbial life in nature and for optimizing industrial bioprocesses occurring under multiple extremes.
Assuntos
Membrana Celular/química , Clostridium/química , Clostridium/fisiologia , Metabolismo Energético , Pressão Hidrostática , TemperaturaRESUMO
Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development.
Assuntos
Deltaproteobacteria/metabolismo , Condutividade Elétrica , Organismos Aquáticos/citologia , Organismos Aquáticos/metabolismo , Organismos Aquáticos/ultraestrutura , Deltaproteobacteria/citologia , Deltaproteobacteria/ultraestrutura , Dinamarca , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Vidro , Microesferas , Dados de Sequência Molecular , Tipagem Molecular , Oceanos e Mares , Oxigênio/metabolismo , Porosidade , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Sulfetos/metabolismoRESUMO
A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.
Assuntos
Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo , Instalações de Eliminação de Resíduos , Archaea , Betaproteobacteria/genética , Betaproteobacteria/crescimento & desenvolvimento , Biodiversidade , Dinamarca , Água Subterrânea/microbiologia , Concentração de Íons de Hidrogênio , Hidrólise , Consórcios Microbianos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16SRESUMO
Oil spill attenuation in Arctic marine environments depends on oil-degrading bacteria. However, the seasonally harsh conditions in the Arctic such as nutrient limitations and sub-zero temperatures limit the activity even for bacteria capable of hydrocarbon metabolism at low temperatures. Here, we investigated whether the variance between epipelagic (seasonal temperature and inorganic nutrient variations) and mesopelagic zone (stable environmental conditions) could limit the growth of oil-degrading bacteria and lead to lower oil biodegradation rates in the epipelagic than in the mesopelagic zone. Therefore, we deployed absorbents coated with three oil types in a SW-Greenland fjord system at 10-20 m (epipelagic) and 615-650 m (mesopelagic) water depth for one year. During this period we monitored the development and succession of the bacterial biofilms colonizing the oil films by 16S rRNA gene amplicon quantification and sequencing, and the progression of oil biodegradation by gas chromatography - mass spectrometry oil fingerprinting analysis. The removal of hydrocarbons was significantly different, with several polycyclic aromatic hydrocarbons showing longer half-life times in the epipelagic than in the mesopelagic zone. Bacterial community composition and density (16S rRNA genes/ cm2) significantly differed between the two zones, with total bacteria reaching to log-fold higher densities (16S rRNA genes/cm2) in the mesopelagic than epipelagic oil-coated absorbents. Consequently, the environmental conditions in the epipelagic zone limited oil biodegradation performance by limiting bacterial growth.
Assuntos
Poluição por Petróleo , Petróleo , Estuários , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Água do Mar/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Petróleo/metabolismoRESUMO
Oil spills in Arctic marine environments are expected to increase concurrently with the expansion of shipping routes and petroleum exploitation into previously inaccessible ice-dominated regions. Most research on oil biodegradation focusses on the bulk oil, but the fate of the water-accommodated fraction (WAF), mainly composed of toxic aromatic compounds, is largely underexplored. To evaluate the bacterial degradation capacity of such dissolved aromatics in Greenlandic seawater, microcosms consisting of 0 °C seawater polluted with WAF were investigated over a 3-month period. With a half-life (t1/2) of 26 days, m-xylene was the fastest degraded compound, as measured by gas chromatography - mass spectrometry. Substantial slower degradation was observed for ethylbenzene, naphthalenes, phenanthrene, acenaphthylene, acenaphthene and fluorenes with t1/2 of 40-105 days. Colwellia, identified by 16S rRNA gene sequencing, was the main potential degrader of m-xylene. This genus occupied up to 47 % of the bacterial community until day 10 in the microcosms. Cycloclasticus and Zhongshania aliphaticivorans, potentially utilizing one-to three-ringed aromatics, replaced Colwellia between day 10 and 96 and occupied up to 6 % and 23 % of the community, respectively. Although most of the WAF can ultimately be eliminated in microcosms, our results suggest that the restoration of an oil-impacted Arctic environment may be slow as most analysed compounds had t1/2 of over 2-3 months and the detrimental effects of a spill towards the marine ecosystem likely persist during this time.
Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Regiões Árticas , Biodegradação Ambiental , Ecossistema , Gammaproteobacteria , Hidrocarbonetos , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Água do Mar , Água , Poluentes Químicos da Água/análiseRESUMO
The origin of the eukaryotic cell is a major open question in biology. Asgard archaea are the closest known prokaryotic relatives of eukaryotes, and their genomes encode various eukaryotic signature proteins, indicating some elements of cellular complexity prior to the emergence of the first eukaryotic cell. Yet, microscopic evidence to demonstrate the cellular structure of uncultivated Asgard archaea in the environment is thus far lacking. We used primer-free sequencing to retrieve 715 almost full-length Loki- and Heimdallarchaeota 16S rRNA sequences and designed novel oligonucleotide probes to visualize their cells in marine sediments (Aarhus Bay, Denmark) using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Super-resolution microscopy revealed 1-2 µm large, coccoid cells, sometimes occurring as aggregates. Remarkably, the DNA staining was spatially separated from ribosome-originated FISH signals by 50-280 nm. This suggests that the genomic material is condensed and spatially distinct in a particular location and could indicate compartmentalization or membrane invagination in Asgard archaeal cells.
Assuntos
Archaea , Ribossomos , Archaea/genética , Archaea/metabolismo , DNA , DNA Arqueal/genética , Genoma Arqueal , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ribossomos/genéticaRESUMO
A novel actinobacterium, designated PNP1(T), was isolated from a wastewater treatment plant at a pesticide factory by selective enrichment with para-nitrophenol. The strictly aerobic strain PNP1(T) grew with para-nitrophenol as the sole carbon and energy source. Metabolism of para-nitrophenol resulted in the stoichiometric release of nitrite. When incubated with both para-nitrophenol and acetate, para-nitrophenol was degraded and utilized as growth substrate prior to acetate. When grown on acetate (in the absence of ammonium) both nitrite and nitrate served as nitrogen sources, nitrate being quantitatively reduced to nitrite which accumulated in cultures during aerobic growth. Cells were coccoid and stained Gram-positive, were non-motile and did not form endospores. Colonies of strain PNP1(T) on agar medium were bright yellow, circular and smooth. The dominant menaquinone was MK-8(H(2)) (54%) and the major cellular fatty acid was anteiso C15:0 (75%). Strain PNP1(T) grew optimally at 27°C, at pH 8-8.5, at salinities 3% (w/v) NaCl, yet exhibited a substantial halotolerance with growth occurring at salinities up to 17% (w/v) NaCl. In addition to para-nitrophenol, a range of sugars, short chain fatty acids and alcohols served as electron donors for growth. The DNA G + C mol% was 68%. The genotypic and phenotypic properties suggest that strain PNP1(T) represents a novel species of the actinobacterial genus Citricoccus for which the name Citricoccus nitrophenolicus is proposed. It is the first member of this genus that has been reported to hydrolyze and grow on para-nitrophenol. The type strain is PNP1(T) (=DSM 23311(T) = CCUG 59571(T)).
Assuntos
Actinobacteria/metabolismo , Nitrofenóis/metabolismo , Eliminação de Resíduos Líquidos , Microbiologia da Água , Acetatos/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Composição de Bases/genética , Dados de Sequência Molecular , Nitratos/metabolismo , Nitritos/metabolismoRESUMO
Two types of endosymbiotic bacteria were identified in the gastrodermis of the marine invertebrate Xenoturbella bocki (Xenoturbellida, Bilateria). While previously described Chlamydia-like endosymbionts were rare, Gammaproteobacteria distantly related to other endosymbionts and pathogens were abundant. The endosymbionts should be considered when interpreting the poorly understood ecology and evolution of Xenoturbella.
Assuntos
Fenômenos Fisiológicos Bacterianos , Chlamydia/classificação , Chlamydia/isolamento & purificação , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Invertebrados/microbiologia , Simbiose , Animais , Chlamydia/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Gammaproteobacteria/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15(T), was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl cellulose and galactomannan. The strain grew at salinities ranging from 2 to 22% NaCl (w/v). Optimal growth occurred in the presence of 7-11% NaCl (w/v) at a temperature of 35°C and a pH of 6.7-8.2. Major whole-cell fatty acids were C16:0 (30.5%), C18:0 (14.8%), C18:1ω7c (13.1%) and C12:0 (7.8%). The G+C content of the DNA was 60 ± 0.5 mol%. By 16S rRNA gene sequence analysis, strain SX15(T) was shown to be affiliated to members of the gammaproteobacterial genus Marinimicrobium with pair wise identity values of 92.9-94.6%. The pheno- and genotypic properties suggest that strain SX15(T) represents a novel species of the genus Marinimicrobium for which the name Marinimicrobium haloxylanilyticum is proposed. The type strain is SX15(T) (= DSM 23100(T) = CCUG 59572(T)).
Assuntos
Alteromonadaceae/classificação , Alteromonadaceae/isolamento & purificação , Sedimentos Geológicos/microbiologia , Salinidade , Alteromonadaceae/citologia , Alteromonadaceae/fisiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/análise , DNA Ribossômico/análise , Farmacorresistência Bacteriana , Genes de RNAr , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/análise , Tolerância ao Sal , Cloreto de Sódio/metabolismo , UtahRESUMO
Bacterial endospores are highly abundant in marine sediments, but their taxonomic identity and ecology is largely unknown. We selectively extracted DNA from endospores and vegetative cells and sequenced 16S rRNA genes to characterize the composition of the endospore and vegetative Firmicutes communities in the sediment and water column of Aarhus Bay (Denmark). The endospore community in the sediment was dominated by the families Bacillaceae, Lachnospiraceae, Clostridiaceae and Ruminoccocaceae. These families were also represented in the vegetative community in the sediment and the endospore community in the water column. OTUs of high relative abundance in the endospore community were also represented in the vegetative Firmicutes community. Other OTUs were exclusively found in the endospore communities. This suggests that endospores accumulate in marine sediments due to passive deposition from the water column and sporulation of vegetative cells in the sediment. Some OTUs were detected in the endospore community of the water column and the vegetative community the sediment indicating that endospores deposited from the water column may germinate upon burial/deposition in the sediment. We provide novel insight into the composition of endospore communities in marine sediments and highlight their role in microbial dispersal and as a seed bank in subsurface sediments.
Assuntos
Firmicutes/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Baías/microbiologia , DNA Bacteriano/genética , Dinamarca , Firmicutes/classificação , Firmicutes/genética , RNA Ribossômico 16S , Análise de Sequência de DNA , Esporos Bacterianos/classificação , Esporos Bacterianos/genética , Esporos Bacterianos/isolamento & purificaçãoRESUMO
In pristine sea ice-covered Arctic waters the potential of natural attenuation of oil spills has yet to be uncovered, but increasing shipping and oil exploitation may bring along unprecedented risks of oil spills. We deployed adsorbents coated with thin oil films for up to 2.5 month in ice-covered seawater and sea ice in Godthaab Fjord, SW Greenland, to simulate and investigate in situ biodegradation and photooxidation of dispersed oil. GC-MS-based chemometric methods for oil fingerprinting were used to identify characteristic signatures for dissolution, biodegradation and photooxidation. In sub-zero temperature seawater, fast degradation of n-alkanes was observed with estimated half-life times of â¼7 days. PCR amplicon sequencing and qPCR quantification of bacterial genes showed that a biofilm with a diverse microbial community colonised the oil films, yet a population related to the psychrophilic hydrocarbonoclastic gammaproteobacterium Oleispira antarctica seemed to play a key role in n-alkane degradation. Although Oleispira populations were also present in sea ice, we found that biofilms in sea ice had 25 to 100 times lower bacterial densities than in seawater, which explained the non-detectable n-alkane degradation in sea ice. Fingerprinting revealed that photooxidation, but not biodegradation, transformed polycyclic aromatic compounds through 50â¯cm-thick sea ice and in the upper water column with removal rates up to â¼1% per day. Overall, our results showed a fast biodegradation of n-alkanes in sea ice-covered seawater, but suggested that oils spills will expose the Arctic ecosystem to bio-recalcitrant PACs over prolonged periods of time.
Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Regiões Árticas , Biodegradação Ambiental , Groenlândia , Camada de Gelo , Água do Mar , SolubilidadeRESUMO
Leakage from cementitious structures with a retaining function can have devastating environmental consequences. Leaks can originate from cracks within the hardened cementitious material that is supposed to seal the structure off from the surrounding environment. Bioactive self-healing concretes containing bacteria capable of microbially inducing CaCO3 precipitation have been suggested to mitigate the healing of such cracks before leaking occurs. An important parameter determining the biocompatibility of concretes and cements is the pH environment. Therefore, a novel ratiometric pH optode imaging system based on an inexpensive single-lens reflex (SLR) camera was used to characterize the pH of porewater within cracks of submerged hydrated oil and gas well cement. This enabled the imaging of pH with a spatial distribution in high resolution (50 µm per pixel) and a gradient of 1.4 pH units per 1 mm. The effect of fly ash substitution and hydration time on the pH of the cement surface was evaluated by this approach. The results show that pH is significantly reduced from pH >11 to below 10 with increasing fly ash content as well as hydration time. The assessment of bioactivity in the cement was evaluated by introducing superabsorbent polymers with encapsulated Bacillus alkalinitrilicus endospores into the cracks. The bacterial activity was measured using oxygen optodes, which showed the highest bacterial activity with increasing amounts of fly ash substitution in the cement, correlating with the decrease in the pH. Overall, our results demonstrate that the pH of well cements can be reliably measured and modified to sustain the microbial activity.
RESUMO
Marine fjords with active glacier outlets are hot spots for organic matter burial in the sediments and subsequent microbial mineralization. Here, we investigated controls on microbial community assembly in sub-arctic glacier-influenced (GI) and non-glacier-influenced (NGI) marine sediments in the Godthåbsfjord region, south-western Greenland. We used a correlative approach integrating 16S rRNA gene and dissimilatory sulfite reductase (dsrB) amplicon sequence data over six meters of depth with biogeochemistry, sulfur-cycling activities, and sediment ages. GI sediments were characterized by comparably high sedimentation rates and had "young" sediment ages of <500 years even at 6 m sediment depth. In contrast, NGI stations reached ages of approximately 10,000 years at these depths. Sediment age-depth relationships, sulfate reduction rates (SRR), and C/N ratios were strongly correlated with differences in microbial community composition between GI and NGI sediments, indicating that age and diagenetic state were key drivers of microbial community assembly in subsurface sediments. Similar bacterial and archaeal communities were present in the surface sediments of all stations, whereas only in GI sediments were many surface taxa also abundant through the whole sediment core. The relative abundance of these taxa, including diverse Desulfobacteraceae members, correlated positively with SRRs, indicating their active contributions to sulfur-cycling processes. In contrast, other surface community members, such as Desulfatiglans, Atribacteria, and Chloroflexi, survived the slow sediment burial at NGI stations and dominated in the deepest sediment layers. These taxa are typical for the energy-limited marine deep biosphere and their relative abundances correlated positively with sediment age. In conclusion, our data suggests that high rates of sediment accumulation caused by glacier runoff and associated changes in biogeochemistry, promote persistence of sulfur-cycling activity and burial of a larger fraction of the surface microbial community into the deep subsurface.
RESUMO
District heating systems (DHS) are extreme aqueous environments characterized by high temperatures, high pH (9.5-10.0), and low nutrient availability. Culture-independent and culture-dependent techniques showed that DHS may nevertheless harbour geno- and phenotypically diverse bacterial biofilm communities. Approximately 50% of the cells in biofilms growing on mild steel coupons in rotortorque reactors connected to the return line (40 degrees C) of a Danish DHS were detectable by FISH analysis and thus were probably metabolically active. A bacterial 16S rRNA gene clone library generated from the biofilms was dominated by proteobacterial phylotypes (closely related to known aerobic species) and by phylotypes affiliated to the anaerobic class Clostridia. Anoxic enrichment cultures derived from biofilms primarily contained 16S rRNA gene and dsrAB (encoding major subunits of dissimilatory sulfite reductase) phylotypes affiliated to the latter class. Alkalitolerant and neutrophilic anaerobic bacteria were isolated from the DHS, including novel Gram-positive and deltaproteobacterial sulfate-reducers and sulfite-reducers constituting novel Gram-positive lineages. In total, 39 distinct 16S rRNA gene phylotypes representing ten classes were identified. The detection of several alkalitolerant, sulfide-producing, and, thus, potentially biocorrosive species underlines the need to maintain a high water quality in the DHS in order to prevent the proliferation of these species.
Assuntos
Bactérias Anaeróbias/classificação , Biofilmes/classificação , Calefação , Proteobactérias/classificação , Aço/química , Microbiologia da Água , Bactérias Anaeróbias/metabolismo , Bactérias Anaeróbias/fisiologia , Clonagem Molecular , Contagem de Colônia Microbiana , Corrosão , Filtração , Biblioteca Gênica , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , Proteobactérias/metabolismo , Proteobactérias/fisiologia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , Sulfatos/metabolismoRESUMO
The diversity of sulfate-reducing bacteria (SRB) inhabiting the extreme hypersaline sediment (270 g L(-1) NaCl) of the northern arm of Great Salt Lake was studied by integrating cultivation and genotypic identification approaches involving PCR-based retrieval of 16S rRNA and dsrAB genes, the latter encoding major subunits of dissimilatory (bi) sulfite reductase. The majority (85%) of dsrAB sequences retrieved directly from the sediment formed a lineage of high (micro) diversity affiliated with the genus Desulfohalobium, while others represented novel lineages within the families Desulfohalobiaceae and Desulfobacteraceae or among Gram-positive SRB. Using the same sediment, SRB enrichment cultures were established in parallel at 100 and at 190 g L(-1) NaCl using different electron donors. After 5-6 transfers, dsrAB and 16S rRNA gene-based profiling of these enrichment cultures recovered a SRB community composition congruent with the cultivation-independent profiling of the sediment. Pure culture representatives of the predominant Desulfohalobium-related lineage and of one of the Desulfobacteraceae-affilated lineages were successfully obtained. The growth performance of these isolates and of the enrichment cultures suggests that the sediment SRB community of the northern arm of Great Salt Lake consists of moderate halophiles, which are salt-stressed at the in situ salinity of 27%.
Assuntos
Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Bactérias Redutoras de Enxofre/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/classificação , UtahRESUMO
An updated dataset of in silico specificities for 54 previously published 16S rRNA-targeted oligonucleotides was assembled to provide guidance for reliable fluorescence in situ hybridization (FISH) analysis of sulfate-reducing bacteria. Additionally, six new FISH probes were developed for major deltaproteobacterial taxa, including a probe trio targeting most Deltaproteobacteria and Gemmatimonadetes.
Assuntos
Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/isolamento & purificação , Bases de Dados de Ácidos Nucleicos , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Sensibilidade e Especificidade , Especificidade da Espécie , Bactérias Redutoras de Enxofre/genéticaRESUMO
Studies of the kinetics of dissimilatory sulfate reduction in marine sediment have shown that a mixture of marine sulfate-reducing bacteria (SRB) can reduce sulfate with both a high and low apparent sulfate half-saturation constant (Km). However, all marine pure cultures investigated have shown only low-sulfate affinity sulfate reduction kinetics. It remains unknown whether marine high sulfate-affinity sulfate reduction is catalyzed by unknown SRB or whether known SRB possess unrecognized high-affinity sulfate reduction systems. We used 35S-sulfate incubation experiments to show that cultures of Desulfobacterium autotrophicum HMR2 will switch from low-affinity to high-affinity sulfate reduction when sulfate concentrations fall below 500 µM. The mean Km was 150 µM at high sulfate concentrations and 8 µM at low sulfate concentrations. The high-affinity Km value is comparable to values found in SRB inhabiting freshwater sediments and D. autotrophicum cultures could deplete sulfate to below our detection limit of 25 nM. The switch in Km value was accompanied by a change in the expression of genes encoding membrane-bound transport proteins putatively involved in sulfate uptake in D. autotrophicum. Our results demonstrate that a marine sulfate reducer can efficiently reduce sulfate at both high and low sulfate concentrations, possibly by activation of different sulfate transporters in the membrane.
Assuntos
Deltaproteobacteria/fisiologia , Sulfatos/metabolismo , Deltaproteobacteria/genética , Desulfovibrio/metabolismo , Sedimentos Geológicos/microbiologia , Oxirredução , Microbiologia da ÁguaRESUMO
Two gram-negative, facultative anaerobic, chemoorganoheterotrophic, motile and rod-shaped bacteria, strains AVMART05(T) and KASP37, were isolated from ascidians (Tunicata, Ascidiaceae) of the genus Ascidiella collected at Gullmarsfjord, Sweden. The strains are the first cultured representatives of an ascidian-specific lineage within the genus Endozoicomonas (Gammaproteobacteria, Oceanospirillales, Hahellaceae). Both strains feature three distinct 16S rRNA gene paralogs, with identities of 98.9-99.1% (AVMART05(T)) and 97.7-98.8% (KASP37) between paralogs. The strains are closely related to Endozoicomonas atrinae and Endozoicomonas elysicola, with which they share 97.3-98.0% 16S rRNA gene sequence identity. Digital DNA-DNA hybridization, average nucleotide identity, and tetra-nucleotide correlation analysis indicate that both strains belong to a single species distinct from their closest relatives. Both strains feature similar DNA G+C contents of 46.70mol% (AVMART05(T)) and 44.64mol% (KASP37). The fatty acid patterns of AVMART05(T) and KASP37 are most similar to those of Endozoicomonas euniceicola and Endozoicomonas gorgoniicola. Based on the polyphasic approach, we propose the species Endozoicomonas ascidiicola sp. nov. to accommodate the newly isolated strains. E. ascidiicola sp. nov. is represented by the type strain AVMART05(T) (=DSM 100913(T)=LMG 29095(T)) and strain KASP37 (=DSM 100914=LMG 29096).
Assuntos
Oceanospirillaceae , RNA Ribossômico 16S/genética , Urocordados/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Sequência de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Oceanospirillaceae/classificação , Oceanospirillaceae/genética , Oceanospirillaceae/isolamento & purificação , Filogenia , Análise de Sequência de DNA , SuéciaRESUMO
The present study addresses the effects of oxygen exposure on the aerobic and anaerobic respiratory activity of Desulfovibrio desulfuricans strain DvO1. This strain was isolated from the highest sulfate-reduction positive most-probable-number dilution (10(6)) of an activated sludge sample, which had been subjected to 120 h of continuous aeration. Washed cell suspensions of strain DvO1 were aerated at 50% atmospheric oxygen saturation in sulfide-free media for a period of 33 h in the presence or absence of an external electron donor (10 mM lactate). During the aeration periods, samples were removed at intervals for determination of anaerobic INT [2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride]-reducing activity, anaerobic sulfate-reducing activity, and oxygen-reducing activity. The cell suspension aerated in the absence of lactate showed negligible endogenous oxygen reduction rates and therefore did not consume oxygen during the aeration period. In contrast, the cell suspension aerated in the presence of lactate sustained significant rates of oxygen reduction during the entire 33 h aeration period. Despite this, no explicit differences in the potential INT-, oxygen-, or sulfate-reducing activities were evident between the two cell suspensions during the aeration periods. Strain DvO1 remained viable throughout the 33 h aeration periods irrespective of the presence or absence of lactate, however, the oxygen exposure resulted in a dose-dependent reversible metabolic inactivation. Notably, lactate-dependent anaerobic sulfate-reducing activity recovered quickly upon anaerobiosis, and was more oxygen tolerant than lactate-dependent oxygen-reducing activity.