Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 8(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413021

RESUMO

Safety concerns related to the use of potentially explosive, liquid organic electrolytes in commercial high-power lithium-ion batteries are constantly rising. One promising alternative is to use thermally stable ionic liquids (ILs) as conductive media, which are however, limited by low ionic conductivity at room temperature. This can be improved by adding fillers, such as silica or alumina nanoparticles (NPs), in the polymer matrix that hosts the IL. To maximize the effect of such NPs, they have to be uniformly dispersed in the matrix while keeping their size as small as possible. In this work, starting from a water dispersion of silica NPs, we present a novel method to incorporate silica NPs at the nanoscale level (<200 nm) into PVdF-HFP polymer clusters, which are then blended with the IL solution and hot-pressed to form separators suitable for battery applications. The effect of different amounts of silica in the polymer matrix on the ionic conductivity and cyclability of the separator is investigated. A membrane containing 10 wt.% of silica (with respect to the polymer) was shown to maximize the performance of the separator, with a room temperature ionic conductivity of of 1.22 mS cm - 1 . The assembled half-coin cell with LiFePO 4 and Li as the cathode and the anode exhibited a capacity retention of more than 80% at a current density of 2C and 60 ∘ C.

2.
Polymers (Basel) ; 10(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30960776

RESUMO

In the last decades bioresorbable and biodegradable polymers have gained a very good reputation both in research and in industry thanks to their unique characteristics. They are able to ensure high performance and biocompatibility, at the same time avoiding post-healing surgical interventions for device removal. In the medical device industry, it is widely known that product formulation and manufacturing need to follow specific procedures in order to ensure both the proper mechanical properties and desired degradation profile. Moreover, the sterilization method is crucial and its impact on physical properties is generally underestimated. In this work we focused our attention on the effect of different terminal sterilization methods on two commercially available poly(l-lactide-co-ε-caprolactone) with equivalent chemical composition (70% PLA and 30% PCL) and relatively similar initial molecular weights, but different chain arrangements and crystallinity. Results obtained show that crystallinity plays a key role in helping preserve the narrow distribution of chains and, as a consequence, defined physical properties. These statements can be used as guidelines for a better choice of the most adequate biodegradable polymers in the production of resorbable medical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA