Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 84(23): 10229-35, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23121544

RESUMO

Antifreeze proteins (AFPs) are of great importance for applications in cryomedicine or the food industry. They are frequently used to lower the freezing point by preventing the growth of larger ice crystals; thus, it is paramount to determine their thermal hysteretic characteristics. However, the experimental analysis of the thermal hysteresis-an effect that is characteristic for AFPs-remains a challenging process. An easy-to-use test method for measuring the thermal hysteresis of AFPs was developed and tested with the type III AFPs. Traditional methods that have been used until now have their disadvantages and limitations. The new measurement method described in this paper allows detection of the complete cooling, freezing, heating, and melting process in a single measurement. This makes it possible to directly determine the thermal hysteresis as a functional effect of the antifreeze proteins. Measurements of the thermal hysteresis were performed by applying ultrasound to initiate the crystallization process of the antifreeze protein solution. This ultrasound technique also allows a crystallization process to be performed at defined temperature. The demonstrated results were highly reproducible and could be clearly read off the measurement curves. As a future perspective, this enables the design of automatic test devices that can be also miniaturized.


Assuntos
Proteínas Anticongelantes/análise , Proteínas Anticongelantes/química , Temperatura Baixa , Temperatura Alta , Perciformes/metabolismo , Animais , Cristalização , Transição de Fase , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Beilstein J Nanotechnol ; 8: 45-63, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144564

RESUMO

Background: Based on previous chemical analyses of insect tarsal adhesives, we prepared 12 heterogeneous synthetic emulsions mimicking the polar/non-polar principle, analysed their microscopical structure and tested their adhesive, frictional, and rheological properties. Results: The prepared emulsions varied in their consistency from solid rubber-like, over soft elastic, to fluid (watery or oily). With droplet sizes >100 nm, all the emulsions belonged to the common type of macroemulsions. The emulsions of the first generation generally showed broader droplet-size ranges compared with the second generation, especially when less defined components such as petrolatum or waxes were present in the lipophilic fraction of the first generation of emulsions. Some of the prepared emulsions showed a yield point and were Bingham fluids. Tribometric adhesion was tested via probe tack tests. Compared with the "second generation" (containing less viscous components), the "first generation" emulsions were much more adhesive (31-93 mN), a finding attributable to their highly viscous components, i.e., wax, petrolatum, gelatin and poly(vinyl alcohol). In the second generation emulsions, we attained much lower adhesivenesses, ranging between 1-18 mN. The adhesive performance was drastically reduced in the emulsions that contained albumin as the protein component or that lacked protein. Tribometric shear tests were performed at moderate normal loads. Our measured friction forces (4-93 mN in the first and 0.1-5.8 mN in the second generation emulsions) were comparatively low. Differences in shear performance were related to the chemical composition and emulsion structure. Conclusion: By varying their chemical composition, synthetic heterogeneous adhesive emulsions can be adjusted to have diverse consistencies and are able to mimic certain rheological and tribological properties of natural tarsal insect adhesives.

3.
Biol Open ; 6(5): 589-601, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507055

RESUMO

Two different measurement techniques were applied to study the attachment of the smooth foot pads of the Madagascar hissing cockroach Gromphadorhina portentosa The attachment of the non-manipulated adhesive organs was compared with that of manipulated ones (depletion or substitution by artificial secretions). From measurements of the friction on a centrifuge, it can be concluded that on nanorough surfaces, the insect appears to benefit from employing emulsions instead of pure oils to avoid excessive friction. Measurements performed with a nanotribometer on single attachment organs showed that, in the non-manipulated euplantulae, friction was clearly increased in the push direction, whereas the arolium of the fore tarsus showed higher friction in the pull direction. The surface of the euplantulae shows an imbricate appearance, whereupon the ledges face distally, which might contribute to the observed frictional anisotropy in the push direction. Upon depletion of the tarsal adhesion-mediating secretion or its replacement by oily fluids, in several cases, the anisotropic effect of the euplantula disappeared due to the decrease of friction forces in push-direction. In the euplantulae, adhesion was one to two orders of magnitude lower than friction. Whereas the tenacity was slightly decreased with depleted secretion, it was considerably increased after artificial application of oily liquids. In terms of adhesion, it is concluded that the semi-solid consistence of the natural adhesion-mediating secretion facilitates the detachment of the tarsus during locomotion. In terms of friction, on smooth to nanorough surfaces, the insects appear to benefit from employing emulsions instead of pure oils to avoid excessive friction forces, whereas on rougher surfaces the tarsal fluid rather functions in improving surface contact by keeping the cuticle compliable and compensating surface asperities of the substratum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA