Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 150: 91-100, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127387

RESUMO

BACKGROUND: Myocardial fibrosis is a hallmark of the failing heart, contributing to the most common causes of deaths worldwide. Several microRNAs (miRNAs, miRs) controlling cardiac fibrosis were identified in recent years; however, a more global approach to identify miRNAs involved in fibrosis is missing. METHODS AND RESULTS: Functional miRNA mimic library screens were applied in human cardiac fibroblasts (HCFs) to identify annotated miRNAs inducing proliferation. In parallel, miRNA deep sequencing was performed after subjecting HCFs to proliferating and resting stimuli, additionally enabling discovery of novel miRNAs. In-depth in vitro analysis confirmed the pro-fibrotic nature of selected, highly conserved miRNAs miR-20a-5p and miR-132-3p. To determine downstream cellular pathways and their role in the fibrotic response, targets of the annotated miRNA candidates were modulated by synthetic siRNA. We here provide evidence that repression of autophagy and detoxification of reactive oxygen species by miR-20a-5p and miR-132-3p explain some of their pro-fibrotic nature on a mechanistic level. CONCLUSION: We here identified both miR-20a-5p and miR-132-3p as crucial regulators of fibrotic pathways in an in vitro model of human cardiac fibroblast biology.


Assuntos
Fibroblastos/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Miocárdio/citologia , Análise de Sequência de RNA , Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Sequência de Bases , Fibrose , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Humanos , Inativação Metabólica/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo
2.
Circulation ; 141(9): 751-767, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31948273

RESUMO

BACKGROUND: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis. METHODS: Antifibrotic drug candidates were identified by functional screening of 480 chemically diverse natural compounds in primary human cardiac fibroblasts, subsequent validation, and mechanistic in vitro and in vivo studies. Hits were analyzed for dose-dependent inhibition of proliferation of human cardiac fibroblasts, modulation of apoptosis, and extracellular matrix expression. In vitro findings were confirmed in vivo with an angiotensin II-mediated murine model of cardiac fibrosis in both preventive and therapeutic settings, as well as in the Dahl salt-sensitive rat model. To investigate the mechanism underlying the antifibrotic potential of the lead compounds, treatment-dependent changes in the noncoding RNAome in primary human cardiac fibroblasts were analyzed by RNA deep sequencing. RESULTS: High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds. CONCLUSIONS: We identified the molecules bufalin and lycorine as drug candidates for therapeutic applications in cardiac fibrosis and diastolic dysfunction.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Bufanolídeos/farmacologia , Cardiomiopatias/prevenção & controle , Fármacos Cardiovasculares/farmacologia , Fibroblastos/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diástole , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Ensaios de Triagem em Larga Escala , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Endogâmicos Dahl , Selenoproteína P/genética , Selenoproteína P/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
3.
Cell Death Differ ; 25(2): 307-318, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099486

RESUMO

The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach.


Assuntos
Proliferação de Células , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Células 3T3 , Animais , Células Cultivadas , Biblioteca Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA