Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Transplant ; 21(1): 362-371, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32885581

RESUMO

Chronic lung allograft dysfunction (CLAD) is the major barrier to long-term survival following lung transplantation, and new mechanistic biomarkers are needed. Lymphocytic bronchitis (LB) precedes CLAD and has a defined molecular signature. We hypothesized that this LB molecular signature would be associated with CLAD in small airway brushings independent of infection. We quantified RNA expression from small airway brushings and transbronchial biopsies, using RNAseq and digital RNA counting, respectively, for 22 CLAD cases and 27 matched controls. LB metagene scores were compared across CLAD strata by Wilcoxon rank sum test. We performed unbiased host transcriptome pathway and microbial metagenome analysis in airway brushes and compared machine-learning classifiers between the two tissue types. This LB metagene score was increased in CLAD airway brushes (p = .002) and improved prediction of graft failure (p = .02). Gene expression classifiers based on airway brushes outperformed those using transbronchial biopsies. While infection was associated with decreased microbial alpha-diversity (p ≤ .04), neither infection nor alpha-diversity was associated with LB gene expression. In summary, CLAD was associated with small airway gene expression changes not apparent in transbronchial biopsies in this cohort. Molecular analysis of airway brushings for diagnosing CLAD merits further examination in multicenter cohorts.


Assuntos
Rejeição de Enxerto , Transplante de Pulmão , Aloenxertos , Rejeição de Enxerto/genética , Humanos , Inflamação/genética , Pulmão , Transplante de Pulmão/efeitos adversos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39115489

RESUMO

BACKGROUND: Chronic lung allograft dysfunction (CLAD) limits survival following lung transplant, but substantial lung damage occurs before diagnosis by traditional methods. We hypothesized that small airway gene expression patterns could identify CLAD risk before spirometric diagnosis and predict subsequent graft failure. METHODS: Candidate genes from 4 rejection-associated transcript sets were assessed for associations with CLAD or graft failure in a derivation cohort of 156 small airway brushes from 45 CLAD cases and 37 time-matched controls with >1-year stable lung function. Candidate genes not associated with CLAD and time to graft failure were excluded, yielding the Airway Inflammation 2 (AI2) gene set. Area under the receiver operating curve (AUC) for CLAD and competing risks of death or graft failure were assessed in an independent validation cohort of 37 CLAD cases and 37 controls. RESULTS: Thirty-two candidate genes were associated with CLAD and graft failure, comprising the AI2 score, which clustered into 3 subcomponents. The AI2 score identified CLAD before its onset, in early and late post-CLAD brushes, as well as in the validation cohort (AUC 0.69-0.88). The AI2 score association with CLAD was independent of positive microbiology, CLAD stage, or CLAD subtype. However, transcripts most associated with CLAD evolved over time from CLAD onset. The AI2 score predicted time to graft failure and retransplant-free survival in both cohorts (p ≤ 0.03). CONCLUSIONS: This airway inflammation gene score is associated with CLAD development, graft failure, and death. Future studies defining the molecular heterogeneity of airway inflammation could lead to endotype-targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA