RESUMO
The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive π0 and η photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the γpâπ0p and γpâηp reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the ηn system at W=1.68GeV. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the S11(1535) and S11(1650) resonances within the S11-partial wave.
RESUMO
A measurement of the double-polarization observable E for the reaction γ p â π 0 p is reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility in Bonn using the Bonn frozen-spin butanol (C 4 H 9 OH) target, which provided longitudinally-polarized protons. Circularly-polarized photons were produced via bremsstrahlung of longitudinally-polarized electrons. The data cover the photon energy range from E γ = 600 to 2310 MeV and nearly the complete angular range. The results are compared to and have been included in recent partial wave analyses.
RESUMO
Data on the beam asymmetry Σ in the photoproduction of η mesons off protons are reported for tagged photon energies from 1130 to 1790 MeV (mass range from W=1748 MeV to W=2045 MeV). The data cover the full solid angle that allows for a precise moment analysis. For the first time, a strong cusp effect in a polarization observable has been observed that is an effect of a branch-point singularity at the pη^{'} threshold [E_{γ}=1447 MeV (W=1896 MeV)]. The latest BnGa partial wave analysis includes the new beam asymmetry data and yields a strong indication for the N(1895)1/2^{-} nucleon resonance, demonstrating the importance of including all singularities for a correct determination of partial waves and resonance parameters.
RESUMO
First measurements of double-polarization observables in ω photoproduction off the proton are presented using transverse target polarization and data from the CEBAF Large Acceptance Spectrometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry F has been measured using circularly polarized, tagged photons in the energy range 1200-2700 MeV, and the beam-target asymmetries H and P have been measured using linearly polarized, tagged photons in the energy range 1200-2000 MeV. These measurements significantly increase the database on polarization observables. The results are included in two partial-wave analyses and reveal significant contributions from several nucleon (N^{*}) resonances. In particular, contributions from new N^{*} resonances listed in the Review of Particle Properties are observed, which aid in reaching the goal of mapping out the nucleon resonance spectrum.
RESUMO
Data on the reaction γpâK^{+}Λ from the CLAS experiments are used to derive the leading multipoles, E_{0+}, M_{1-}, E_{1+}, and M_{1+}, from the production threshold to 2180 MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel L+P model that allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion and photoinduced reactions within the Bonn-Gatchina partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin parity J^{P}=1/2^{-}, 1/2^{+}, and 3/2^{+} in the region at about 1.9 GeV.
RESUMO
We report the first beam-target double-polarization asymmetries in the γ+n(p)âπ^{-}+p(p) reaction spanning the nucleon resonance region from invariant mass W=1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several γnN^{*} resonance photocouplings.
RESUMO
The Nπ^{0}π^{0} decays of positive-parity N^{*} and Δ^{*} resonances at about 2 GeV are studied at ELSA by photoproduction of two neutral pions off protons. The data reveal clear evidence for several intermediate resonances: Δ(1232), N(1520)3/2^{-}, and N(1680)5/2^{+}, with spin parities J^{P}=3/2^{+}, 3/2^{-}, and 5/2^{+}. The partial wave analysis (within the Bonn-Gatchina approach) identifies N(1440)1/2^{+} and the N(ππ)_{S wave} (abbreviated as Nσ here) as further isobars and assigns the final states to the formation of nucleon and Δ resonances and to nonresonant contributions. We observe the known Δ(1232)π decays of Δ(1910)1/2^{+}, Δ(1920)3/2^{+}, Δ(1905)5/2^{+}, Δ(1950)7/2^{+}, and of the corresponding spin-parity series in the nucleon sector, N(1880)1/2^{+}, N(1900)3/2^{+}, N(2000)5/2^{+}, and N(1990)7/2^{+}. For the nucleon resonances, these decay modes are reported here for the first time. Further new decay modes proceed via N(1440)1/2^{+}π, N(1520)3/2^{-}π, N(1680)5/2^{+}π, and Nσ. The latter decay modes are observed in the decay of N^{*} resonances and at most weakly in Δ^{*} decays. It is argued that these decay modes provide evidence for a 3-quark nature of N^{*} resonances rather than a quark-diquark structure.
RESUMO
The first measurement of the helicity dependence of the photoproduction cross section of single neutral pions off protons is reported for photon energies from 600 to 2300 MeV, covering nearly the full solid angle. The data are compared to predictions from the SAID, MAID, and BnGa partial wave analyses. Strikingly large differences between data and predictions are observed, which are traced to differences in the helicity amplitudes of well-known and established resonances. Precise values for the helicity amplitudes of several resonances are reported.
RESUMO
New data on the polarization observables T, P, and H for the reaction γpâpπ(0) are reported. The results are extracted from azimuthal asymmetries when a transversely polarized butanol target and a linearly polarized photon beam are used. The data were taken at the Bonn electron stretcher accelerator ELSA using the CBELSA/TAPS detector. These and earlier data are used to perform a truncated energy-independent partial wave analysis in sliced-energy bins. This energy-independent analysis is compared to the results from energy-dependent partial wave analyses.
RESUMO
The first measurement is reported of the double-polarization observable G in the photoproduction of neutral pions off protons, covering the photon energy range from 620 to 1120 MeV and the full solid angle. G describes the correlation between the photon polarization plane and the scattering plane for protons polarized along the direction of the incoming photon. The observable is highly sensitive to contributions from baryon resonances. The new results are compared to the predictions from SAID, MAID, and BnGa partial wave analyses. In spite of the long-lasting efforts to understand γpâpπ(0) as the simplest photoproduction reaction, surprisingly large differences between the new data and the latest predictions are observed which are traced to different contributions of the N(1535) resonance with spin parity J(P)=1/2(-) and N(1520) with J(P)=3/2(-). In the third resonance region, where N(1680) with J(P)=5/2(+) production dominates, the new data are reasonably close to the predictions.
RESUMO
Information on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic omega width is found to be 130-150 MeV/c(2) at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the omega meson, this inelastic omega width corresponds to a reduction of the omega lifetime by a factor approximately 30. For the first time, the momentum dependent omegaN cross section has been extracted from the experiment and is in the range of 70 mb.
RESUMO
Quasifree photoproduction of eta mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The eta mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasifree n(gamma,eta)n and p(gamma,eta)p reactions. The excitation function for eta production off the neutron shows a pronounced bumplike structure at W=1.68 GeV (E{gamma} approximately 1 GeV), which is absent for the proton.
RESUMO
Evidence is reported for the existence of a parity doublet of Delta resonances with total angular momentum J=3/2 from photoproduction of the ppi;{0}eta final state. The two parity partners Delta(1920)P33 and Delta(1940)D33 make significant contributions to the reaction. Cascades of resonances into Delta(1232)eta, N(1535)pi, and Na0(980) are clearly observed.
RESUMO
Single pi(0) photoproduction has been studied with the CB-ELSA experiment at Bonn using tagged photon energies between 0.3 and 3.0 GeV. The experimental setup covers a very large solid angle of approximately 98% of 4pi. Differential cross sections dsigma/dOmega have been measured. Complicated structures in the angular distributions indicate a variety of different resonances being produced in the s channel intermediate state gammap-->N(*)(Delta(*))-->ppi(0). A combined analysis including the data presented in this letter along with other data sets reveals contributions from known resonances and evidence for a new resonance N(2070)D15.
RESUMO
Total and differential cross sections for the reaction p(gamma,eta)p have been measured for photon energies in the range from 750 MeV to 3 GeV. The low-energy data are dominated by the S11 wave which has two poles in the energy region below 2 GeV. Eleven nucleon resonances are observed in their decay into peta. At medium energies we find evidence for a new resonance N(2070)D15 with (M,Gamma)=(2068+/-22, 295+/-40) MeV. At gamma energies above 1.5 GeV, a strong peak in the forward direction develops, signaling the exchange of vector mesons in the t channel.
RESUMO
The photoproduction of omega mesons on nuclei has been investigated using the Crystal Barrel/TAPS experiment at the ELSA tagged photon facility in Bonn. The aim is to study possible in-medium modifications of the omega meson via the reaction gamma + A --> omega + X --> pi(0)gamma + X('). Results obtained for Nb are compared to a reference measurement on a LH2 target. While for recoiling, long-lived mesons (pi(0), eta, and eta;(')), which decay outside of the nucleus, a difference in the line shape for the two data samples is not observed, we find a significant enhancement towards lower masses for omega mesons produced on the Nb target. For momenta less than 500 MeV/c an in-medium omega meson mass of M(medium) = [722(+4)(-4)(stat)+35-5(syst)] MeV/c(2) has been deduced at an estimated average nuclear density of 0.6rho(0).