Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 48: 109273, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383781

RESUMO

This article provides datasets containing three years worth of solar spectra for the optimum installation angle of 35° and the building-integrated-photovoltaics relevant vertical angle of 90°. These datasets were obtained by measuring the spectrally resolved solar spectra using a five minute interval, where two sets of spectrometers, which measure different ranges of the solar spectrum, were employed. In addition, a merged dataset of these two spectral measurements, related to every specific five minute interval measurement, is provided. An analysis and interpretation of the data using only year the 2020 is provided in "Measurement and analysis of annual solar spectra at different installation angles in central Europe" [1].

2.
ACS Appl Energy Mater ; 5(4): 3933-3940, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35497685

RESUMO

The sub-bandgap levels associated with defect states in Cu2ZnSnS4 (CZTS) thin films are investigated by correlating the temperature dependence of the absorber photoluminescence (PL) with the device admittance spectroscopy. CZTS thin films are prepared by thermolysis of molecular precursors incorporating chloride salts of the cations and thiourea. Na and Sb are introduced as dopants in the precursor layers to assess their impact on Cu/Zn and Sn site disorder, respectively. Systematic analysis of PL spectra as a function of excitation power and temperature show that radiative recombination is dominated by quasi-donor-acceptor pairs (QDAP) with a maximum between 1.03 and 1.18 eV. It is noteworthy that Sb doping leads to a transition from localized to delocalized QDAP. The activation energies obtained associated with QDAP emission closely correlate with the activation energies of the admittance responses in a temperature range between 150 K and room temperature in films with or without added dopants. Admittance data of CZTS films with no added dopants also have a strong contribution from a deeper state associated with Sn disorder. The ensemble of PL and admittance data, in addition to energy-filtered photoemission of electron microscopy (EF-PEEM), shows a detailed picture of the distribution of sub-bandgap states in CZTS and the impact of doping on their energetics and device performance.

3.
Materials (Basel) ; 12(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650608

RESUMO

The crystallisation of sputter-deposited, amorphous In2O3:H films was investigated. The influence of deposition and crystallisation parameters onto crystallinity and electron hall mobility was explored. Significant precipitation of metallic indium was discovered in the crystallised films by electron energy loss spectroscopy. Melting of metallic indium at ~160 °C was suggested to promote primary crystallisation of the amorphous In2O3:H films. The presence of hydroxyl was ascribed to be responsible for the recrystallization and grain growth accompanying the inter-grain In-O-In bounding. Metallic indium was suggested to provide an excess of free electrons in as-deposited In2O3 and In2O3:H films. According to the ultraviolet photoelectron spectroscopy, the work function of In2O3:H increased during crystallisation from 4 eV to 4.4 eV, which corresponds to the oxidation process. Furthermore, transparency simultaneously increased in the infraredspectral region. Water was queried to oxidise metallic indium in UHV at higher temperature as compared to oxygen in ambient air. Secondary ion mass-spectroscopy results revealed that the former process takes place mostly within the top ~50 nm. The optical band gap of In2O3:H increased by about 0.2 eV during annealing, indicating a doping effect. This was considered as a likely intra-grain phenomenon caused by both (In°)O•• and (OH-)O• point defects. The inconsistencies in understanding of In2O3:H crystallisation, which existed in the literature so far, were considered and explained by the multiplicity and disequilibrium of the processes running simultaneously.

4.
ACS Appl Mater Interfaces ; 9(3): 2301-2308, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28032981

RESUMO

A single molecular precursor solution is described for the deposition of CuIn(S,Se)2 (CIS) film onto Mo-coated glass substrates by spin coating, followed by annealing in Se atmosphere. Characterization of the films by X-ray diffraction, Raman spectroscopy and scanning electron microscopy demonstrates the formation of a highly homogeneous and compact 1.1 µm thick CIS layer, with a MoSe2 under-layer. Atomic force microscopy reveals the presence of spherical grains between 400 and 450 nm, featuring surface corrugation in the range of 30 nm. Film composition is found to be in close agreement with that of the precursor solution. Diffuse reflectance spectroscopy shows a direct band gap (Eg) of 1.36 eV. Intensity and temperature dependence photoluminescence spectra show characteristic features associated with a donor-acceptor pair recombination mechanism, featuring activation energy of 34 meV. Over 85 solar cell devices with the configuration Mo/CIS/CdS/i-ZnO/Al:ZnO/Ni-Al and an total area of 0.5 cm2 were fabricated and tested. The champion cell shows a power efficiency of 3.4% with an open circuit voltage of 521 mV and short circuit current of 14 mA/cm2 under AM 1.5 illumination and an external quantum efficiency above 60%. Overall variation in each of solar cell parameters remains below 10% of the average value, demonstrating the remarkable homogeneity of this solution processing method. To understand the limitation of devices, the dependence of the open-circuit voltage and impedance spectra upon temperature were analyzed. The data reveal that the CuIn(S,Se)2/CdS interface is the main recombination pathway with an activation energy of 0.79 eV as well as the presence of two "bulk" defect states with activation energies of 37 and 122 meV. We also estimated that the MoSe2 under-layer generates back contact barrier of 195 meV.

5.
Artigo em Inglês | MEDLINE | ID: mdl-27240773

RESUMO

Semiconducting indium sulfide (In2S3) has recently attracted considerable attention as a buffer material in the field of thin film photovoltaics. Compared with this growing interest, however, detailed characterizations of the crystal structure of this material are rather scarce and controversial. In order to close this gap, we have carried out a reinvestigation of the crystal structure of this material with an in situ X-ray diffraction study as a function of temperature using monochromatic synchrotron radiation. For the purpose of this study, high quality polycrystalline In2S3 material with nominally stoichiometric composition was synthesized at high temperatures. We found three modifications of In2S3 in the temperature range between 300 and 1300 K, with structural phase transitions at temperatures of 717 K and above 1049 K. By Rietveld refinement we extracted the crystal structure data and the temperature coefficients of the lattice constants for all three phases, including a high-temperature trigonal γ-In2S3 modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA