Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461878

RESUMO

Previously, we detected a higher degree of mineralization in fetal calf serum (FCS) compared to serum-free cultured jaw periosteum derived osteoprogenitor cells (JPCs). By Raman spectroscopy, we detected an earlier formation of mineralized extracellular matrix (ECM) of higher quality under serum-free media conditions. However, mineralization potential remained too low. In the present study, we aimed to investigate the biochemical composition and subsequent biomechanical properties of the JPC-formed ECM and minerals under human platelet lysate (hPL) and FCS supplementation. JPCs were isolated (n = 4 donors) and expanded under FCS conditions and used in passage five for osteogenic induction under both, FCS and hPL media supplementation. Raman spectroscopy and Alizarin Red/von Kossa staining were employed for biochemical composition analyses and for visualization and quantification of mineralization. Osteocalcin gene expression was analyzed by quantitative PCR. Biomechanical properties were assessed by using atomic force microscopy (AFM). Raman spectroscopic measurements showed significantly higher (p < 0.001) phosphate to protein ratios and in the tendency, lower carbonate to phosphate ratios in osteogenically induced JPCs under hPL in comparison to FCS culturing. Furthermore, higher crystal sizes were detected under hPL culturing of the cells. With respect to the ECM, significantly higher ratios of the precursor protein proline to hydroxyproline were detected in hPL-cultured JPC monolayers (p < 0.001). Additionally, significantly higher levels (p < 0.001) of collagen cross-linking were calculated, indicating a higher degree of collagen maturation in hPL-cultured JPCs. By atomic force microscopy, a significant increase in ECM stiffness (p < 0.001) of FCS cultured JPC monolayers was observed. The reverse effect was measured for the JPC formed precipitates/minerals. Under hPL supplementation, JPCs formed minerals of significantly higher stiffness (p < 0.001) when compared to the FCS setting. This study demonstrates that hPL culturing of JPCs leads to the formation of an anorganic material of superior quality in terms of biochemical composition and mechanical properties.


Assuntos
Cálcio/metabolismo , Arcada Osseodentária/citologia , Osteoblastos/metabolismo , Periósteo/metabolismo , Fosfatos/metabolismo , Calcificação Fisiológica , Carbonatos/metabolismo , Células Cultivadas , Colágeno/metabolismo , Meios de Cultura/farmacologia , Matriz Extracelular/metabolismo , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Osteocalcina/genética , Osteocalcina/metabolismo , Periósteo/citologia , Prolina/metabolismo
2.
Clin Chem Lab Med ; 54(3): 437-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26351941

RESUMO

BACKGROUND: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is routinely used for analysis of immunosuppressive drugs. This study investigated whether replacing analog internal standards (ANISs) with isotopically labeled internal standards (ILISs) has an impact on the performance of a LC-MS/MS method for the quantification of tacrolimus (TAC), sirolimus (SIR), ciclosporin A (CsA) and everolimus (EVE) in whole blood. METHODS: Following hemolysis, protein precipitation, and extraction with either ANISs (ascomycin, desmethoxy-rapamycin, CsD), or ILISs (TAC-13C,D2; SIR-13C,D3; CsA-D12; EVE-D4), samples were centrifuged and injected into a LC-MS/MS device equipped with a C18 reversed phase column. The effect of the two ISs on the linearity, precision, accuracy, trueness, matrix effects, and carryover was investigated by using the same patient-, proficiency testing-, and quality control samples. Statistical analysis of agreement between results includes a standard random effects model and Passing-Bablok regression. RESULTS: Within-day imprecision was <10%, between-day <8%, and trueness 91%-110% for all the analytes with both ISs. No carryover or matrix effects were observed. The median accuracy was -2.1% for CsA, 9.1% for EVE, 12.2% for SIR, and -1.2% for TAC with the ILISs; and -2% for CsA, 9.8% for EVE, 11.4% for SIR, and 0.2% for TAC with the ANISs. Results of patient and proficiency testing samples were not statistically different. CONCLUSIONS: Although ILISs are generally considered superior to ANISs, they may not be always essential. When optimizing a LC-MS/MS method other factors must be also considered.


Assuntos
Análise Química do Sangue/normas , Cromatografia Líquida/normas , Imunossupressores/sangue , Marcação por Isótopo/normas , Espectrometria de Massas em Tandem/normas , Ciclosporina/sangue , Everolimo/sangue , Humanos , Sirolimo/sangue , Tacrolimo/sangue
3.
J Funct Biomater ; 14(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37623671

RESUMO

Autologous bone transplantation is still considered as the gold standard therapeutic option for bone defect repair. The alternative tissue engineering approaches have to combine good hardiness of biomaterials whilst allowing good stem cell functionality. To become more useful for load-bearing applications, mechanical properties of calcium phosphate materials have to be improved. In the present study, we aimed to reduce the brittleness of ß-tricalcium phosphate (ß-TCP). For this purpose, we used three polymers (PDL-02, -02a, -04) for coatings and compared resulting mechanical and degradation properties as well as their impact on seeded periosteal stem cells. Mechanical properties of coated and uncoated ß-TCP scaffolds were analyzed. In addition, degradation kinetics analyses of the polymers employed and of the polymer-coated scaffolds were performed. For bioactivity assessment, the scaffolds were seeded with jaw periosteal cells (JPCs) and cultured under untreated and osteogenic conditions. JPC adhesion/proliferation, gene and protein expression by immunofluorescent staining of embedded scaffolds were analyzed. Raman spectroscopy measurements gave an insight into material properties and cell mineralization. PDL-coated ß-TCP scaffolds showed a significantly higher flexural strength in comparison to that of uncoated scaffolds. Degradation kinetics showed considerable differences in pH and electrical conductivity of the three different polymer types, while the core material ß-TCP was able to stabilize pH and conductivity. Material differences seemed to have an impact on JPC proliferation and differentiation potential, as reflected by the expression of osteogenic marker genes. A homogenous cell colonialization of coated and uncoated scaffolds was detected. Most interesting from a bone engineer's point of view, the PDL-04 coating enabled detection of cell matrix mineralization by Raman spectroscopy. This was not feasible with uncoated scaffolds, due to intercalating effects of the ß-TCP material and the JPC-formed calcium phosphate. In conclusion, the use of PDL-04 coating improved the mechanical properties of the ß-TCP scaffold and promoted cell adhesion and osteogenic differentiation, whilst allowing detection of cell mineralization within the ceramic core material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA