Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13525, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866945

RESUMO

The traditional nomenclature of enteroendocrine cells (EECs), established in 1977, applied the "one cell - one hormone" dogma, which distinguishes subpopulations based on the secretion of a specific hormone. These hormone-specific subpopulations included S cells for secretin (SCT), K cells for glucose-dependent insulinotropic polypeptide (GIP), N cells producing neurotensin (NTS), I cells producing cholecystokinin (CCK), D cells producing somatostatin (SST), and others. In the past 15 years, reinvestigations into murine and human organoid-derived EECs, however, strongly questioned this dogma and established that certain EECs coexpress multiple hormones. Using the Gut Cell Atlas, the largest available single-cell transcriptome dataset of human intestinal cells, this study consolidates that the original dogma is outdated not only for murine and human organoid-derived EECs, but also for primary human EECs, showing that the expression of certain hormones is not restricted to their designated cell type. Moreover, specific analyses into SCT-expressing cells reject the presence of any cell population that exhibits significantly elevated secretin expression compared to other cell populations, previously referred to as S cells. Instead, this investigation indicates that secretin production is realized jointly by other enteroendocrine subpopulations, validating corresponding observations in murine EECs also for human EECs. Furthermore, our findings corroborate that SCT expression peaks in mature EECs, in contrast, progenitor EECs exhibit markedly lower expression levels, supporting the hypothesis that SCT expression is a hallmark of EEC maturation.


Assuntos
Células Enteroendócrinas , Perfilação da Expressão Gênica , Secretina , Análise de Célula Única , Humanos , Células Enteroendócrinas/metabolismo , Secretina/metabolismo , Secretina/genética , Análise de Célula Única/métodos , Camundongos , Animais , Transcriptoma , Diferenciação Celular , Organoides/metabolismo , Organoides/citologia , Colecistocinina/metabolismo , Colecistocinina/genética , Somatostatina/metabolismo , Somatostatina/genética , Análise da Expressão Gênica de Célula Única
2.
Acta Physiol (Oxf) ; 240(9): e14209, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072954

RESUMO

AIM: Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential. METHODS: In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1. RESULTS: We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function. CONCLUSION: Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.


Assuntos
Proteína Desacopladora 1 , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Nucleotídeos de Purina/metabolismo
3.
Neurogastroenterol Motil ; : e14761, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342975

RESUMO

INTRODUCTION: The herbal preparation STW 5 ameliorates functional dyspepsia partly by relaxing smooth muscle of the proximal stomach, thus improving gastric accommodation. We explored the unknown pathways responsible for this effect by testing targets known to modulate gastric smooth muscle relaxation. METHODS: STW 5-induced relaxation of smooth muscle strips from guinea pig gastric corpus before and after pharmacological interventions were recorded with force transducers in an organ bath. ORAI1 mRNA expression was tested in the proximal stomach. KEY RESULTS: Blockade of Ca2+ -activated K+ and Cl- channels, voltage-gated L- or T-type Ca2+ channels, TRPA1-, TRPV1-, adenosine or 5-HT4 receptors, antagonizing ryanodine receptors, inhibiting cyclooxygenase or sarcoplasmic reticulum calcium ATPase did not affect STW 5-evoked relaxation. Likewise, protein-kinase A or G were not involved. However, the relaxation evoked by STW 5 was significantly reduced by phorbol-12-myristat-13-acetat, an activator of protein-kinase C, by 2- aminoethyldiphenylborinate, an inhibitor of the IP3 receptor-mediated Ca2+ release from the sarcoplasmic reticulum or by SKF-96365, a nonselective store-operated calcium entry (SOCE) blocker. Furthermore, the mixed TRPC3/SOCE inhibitor Pyr3, but not the selective TRPC3 blocker Pyr10, reduced the effect of STW 5. Finally, BTP2, a potent blocker of ORAI-coupled SOCE, almost abolished STW 5-evoked relaxation. Expression of ORAI1 could be demonstrated in the corpus/fundus. CONCLUSIONS & INFERENCES: STW 5 inhibited SOCE, most likely ORAI channels, which are modulated by IP3- and PKC-dependent mechanisms. Our findings impact on the design of drugs to induce muscle relaxation and help identify phytochemicals with similar modes of actions to treat gastrointestinal disturbances.

4.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843936

RESUMO

Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria. Their purity was verified by comparison of proteomes with ER and mitochondria-associated membranes. A lipid signature containing PC and FC, calculated from the lipidomic profiles, allowed differentiation of mitochondria from BAT of mice housed at different temperatures. Elevating FC in BAT mitochondria prevented uncoupling protein (UCP) 1 function, whereas increasing GPL boosted it. Similarly, STARD3 overexpression facilitating mitochondrial FC import inhibited UCP1 function in primary brown adipocytes, whereas a knockdown promoted it. We conclude that the mitochondrial GPL/FC ratio is key for BAT function and propose that targeting it might be a promising strategy to promote UCP1 activity.


Assuntos
Tecido Adiposo Marrom , Colesterol , Lipidômica , Mitocôndrias , Proteína Desacopladora 1 , Animais , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Camundongos , Tecido Adiposo Marrom/metabolismo , Colesterol/metabolismo , Mitocôndrias/metabolismo , Lipidômica/métodos , Especificidade de Órgãos , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Glicerofosfolipídeos/metabolismo , Masculino , Metabolismo dos Lipídeos
5.
Sci Data ; 11(1): 524, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778016

RESUMO

Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts. However, relevant information resides at differing stages across the data-lifecycle. Often, this information is defined and standardized only at publication stage, which can lead to data loss and workload increase. In this study, we developed Metadatasheet, a metadata standard based on interviews with members of two biomedical consortia and systematic screening of data repositories. It aligns with the data-lifecycle allowing synchronous metadata recording within Microsoft Excel, a widespread data recording software. Additionally, we provide an implementation, the Metadata Workbook, that offers user-friendly features like automation, dynamic adaption, metadata integrity checks, and export options for various metadata standards. By design and due to its extensive documentation, the proposed metadata standard simplifies recording and structuring of metadata for biomedical scientists, promoting practicality and convenience in data management. This framework can accelerate scientific progress by enhancing collaboration and knowledge transfer throughout the intermediate steps of data creation.


Assuntos
Gerenciamento de Dados , Metadados , Pesquisa Biomédica , Gerenciamento de Dados/normas , Metadados/normas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA