RESUMO
Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.
Assuntos
Diterpenos , Retinaldeído , Rodopsina , Isomerismo , Conformação Proteica , Rodopsina/metabolismo , Retinaldeído/químicaRESUMO
We report on porphyrin-flavonol hybrids consisting of a porphyrin antenna and four covalently bound 3-hydroxyflavone (flavonol) groups, which act as highly efficient photoactivatable carbon monoxide (CO)-releasing molecules (photoCORMs). These bichromophoric systems enable activation of the UV-absorbing flavonol chromophore by visible light up to 650 nm and offer precise spatial and temporal control of CO administration. The physicochemical properties of the porphyrin antenna system can also be tuned by inserting a metal cation. Our computational study revealed that the process occurs via endergonic triplet-triplet energy transfer from porphyrin to flavonol and may become feasible thanks to flavonol energy stabilization upon intramolecular proton transfer. This mechanism was also indirectly supported by steady-state and transient absorption spectroscopy techniques. Additionally, the porphyrin-flavonol hybrids were found to be biologically benign. With four flavonol CO donors attached to a single porphyrin chromophore, high CO release yields, excellent uncaging cross sections, low toxicity, and CO therapeutic properties, these photoCORMs offer exceptional potential for their further development and future biological and medical applications.
RESUMO
Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid CâN stretch vibration in the LA state and the Gln CâO in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.
Assuntos
Glutamina , Fotorreceptores Microbianos , Glutamina/química , Prótons , Flavina-Adenina Dinucleotídeo/química , Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Luz , Tirosina , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos OrgânicosRESUMO
Bilirubin (BR) is an essential metabolite formed by the catabolism of heme. Phototherapy with blue-green light can be applied to reduce high concentrations of BR in blood and is used especially in the neonatal period. In this work, we studied the photochemistry of (Z)-isovinylneoxanthobilirubic acid methyl ester, a dipyrrinone subunit of BR, by steady-state absorption, femtosecond transient absorption, and stimulated Raman spectroscopies. Both the (Z)- and (E)-configurational isomers of isovinylneoxanthobilirubic acid undergo wavelength-dependent and reversible photoisomerization. The isomerization from the excited singlet state is ultrafast (the lifetimes of (Z)- and (E)-isomers were found to be â¼0.9 and 0.1 ps, respectively), and its efficiencies increase with increased photon energy. In addition, we studied sensitized photooxidation of the dipyrrinone subunit by singlet oxygen that leads to the formation of propentdyopents. Biological activities of these compounds, namely, effects on the superoxide production, lipoperoxidation, and tricarboxylic acid cycle metabolism, were also studied. Finally, different photochemical and biological properties of this BR subunit and its structural analogue, (Z)-vinylneoxanthobilirubic acid methyl ester, studied before, are discussed.
Assuntos
Bilirrubina , Ésteres , Bilirrubina/química , Humanos , Recém-Nascido , Fotoquímica , Fototerapia/métodos , Análise Espectral RamanRESUMO
Ruthenium(II) polypyridyl complexes [Ru(CN-Me-bpy)x(bpy)3-x]2+ (CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, and x = 1-3, abbreviated as 12+, 22+, and 32+) undergo four (12+) or five (22+ and 32+) successive one-electron reduction steps between -1.3 and -2.75 V versus ferrocenium/ferrocene (Fc+/Fc) in tetrahydrofuran. The CN-Me-bpy ligands are reduced first, with successive one-electron reductions in 22+ and 32+ being separated by 150-210 mV; reduction of the unsubstituted bpy ligand in 12+ and 22+ occurs only when all CN-Me-bpy ligands have been converted to their radical anions. Absorption spectra of the first three reduction products of each complex were measured across the UV, visible, near-IR (NIR), and mid-IR regions and interpreted with the help of density functional theory calculations. Reduction of the CN-Me-bpy ligand shifts the ν(C≡N) IR band by ca. -45 cm-1, enhances its intensity â¼35 times, and splits the symmetrical and antisymmetrical modes. Semireduced complexes containing two and three CN-derivatized ligands 2+, 3+, and 30 show distinct ν(C≡N) features due to the presence of both CN-Me-bpy and CN-Me-bpyâ¢-, confirming that each reduction is localized on a single ligand. NIR spectra of 10, 1-, and 2- exhibit a prominent band attributable to the CN-Me-bpyâ¢- moiety between 6000 and 7500 cm-1, whereas bpyâ¢--based absorption occurs between 4500 and 6000 cm-1; complexes 2+, 3+, and 30 also exhibit a band at ca. 3300 cm-1 due to a CN-Me-bpyâ¢- â CN-Me-bpy interligand charge-transfer transition. In the UV-vis region, the decrease of π â π* intraligand bands of the neutral ligands and the emergence of the corresponding bands of the radical anions are most diagnostic. The first reduction product of 12+ is spectroscopically similar to the lowest triplet metal-to-ligand charge-transfer excited state, which shows pronounced NIR absorption, and its ν(C≡N) IR band is shifted by -38 cm-1 and 5-7-fold-enhanced relative to the ground state.
RESUMO
We present a methodology that provides a complete parametric description of the time evolution of the electronically and vibrationally excited states as detected by ultrafast transient absorption (TA). Differently from previous approaches, which started fitting the data after ≈100 fs, no data are left out in our methodology, and the "coherent artifact" and the instrument response function are fully taken into account. In case studies, the method is applied to solvents, the dye Nile blue, and all-trans ß-carotene in cyclohexane solution. The estimated Damped Oscillation Associated Spectra (DOAS) and phases express the most important vibrational frequencies present in the molecular system. By global fit alone of the experimental data, it is difficult to interpret in detail the underlying dynamics. Since it is unfeasible to directly fit the data by a theoretical simulation, our enhanced DOAS methodology thus provides a useful "middle ground" where the theoretical description and the fit of the experimental data can meet. ß-carotene in cyclohexane was complementarily studied with femtosecond stimulated Raman spectroscopy (FSRS). The fs-ps dynamics of ß-carotene in cyclohexane in TA and FSRS experiments can be described by a sequential scheme S2 â hot S1 â S1' â S1 â S0 with lifetimes of 167 fs (fixed), 0.35, 1.1, and 9.6 ps. The correspondence of DOAS decaying concomitantly with hot S1 and the Species Associated Difference Spectra of hot S1 in TA and FSRS suggest that we observe here features of the vibrational relaxation and nuclear reorganization responsible for the hot S1 to S1 transition.
RESUMO
UV-absorbing rhodopsins are essential for UV vision and sensing in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins, which bind a protonated retinal Schiff base for light absorption, UV-absorbing rhodopsins bind an unprotonated retinal Schiff base. Thus far, the photoreaction dynamics and mechanisms of UV-absorbing rhodopsins have remained essentially unknown. Here, we report the complete excited- and ground-state dynamics of the UV form of histidine kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy, covering time scales from femtoseconds to milliseconds. We found that energy-level ordering is inverted with respect to visible-absorbing rhodopsins, with an optically forbidden low-lying S1 excited state that has Ag- symmetry and a higher-lying UV-absorbing S2 state of Bu+ symmetry. UV-photoexcitation to the S2 state elicits a unique dual-isomerization reaction: first, C13âC14 cis-trans isomerization occurs during S2-S1 evolution in <100 fs. This very fast reaction features the remarkable property that the newly formed isomer appears in the excited state rather than in the ground state. Second, C15âN16 anti-syn isomerization occurs on the S1-S0 evolution to the ground state in 4.8 ps. We detected two ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground state. These isomers become protonated in 58 µs and 3.2 ms, respectively, resulting in formation of the blue-absorbing form of HKR1. Our results constitute a benchmark of UV-induced photochemistry of animal and microbial rhodopsins.
RESUMO
Photosynthesis in plants starts with the capture of photons by light-harvesting complexes (LHCs). Structural biology and spectroscopy approaches have led to a map of the architecture and energy transfer pathways between LHC pigments. Still, controversies remain regarding the role of specific carotenoids in light-harvesting and photoprotection, obligating the need for high-resolution techniques capable of identifying excited-state signatures and molecular identities of the various pigments in photosynthetic systems. Here we demonstrate the successful application of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric biological complex, trimers of LHCII. We demonstrate the application of global and target analysis (GTA) to FSRS data and utilize it to quantify excitation migration in LHCII trimers. This powerful combination of techniques allows us to obtain valuable insights into structural, electronic, and dynamic information from the carotenoids of LHCII trimers. We report spectral and dynamical information on ground- and excited-state vibrational modes of the different pigments, resolving the vibrational relaxation of the carotenoids and the pathways of energy transfer to chlorophylls. The lifetimes and spectral characteristics obtained for the S1 state confirm that lutein 2 has a distorted conformation in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls, while lutein 1 is the only carotenoid whose S1 state plays a significant energy-harvesting role. No appreciable energy transfer takes place from lutein 1 to lutein 2, contradicting recent proposals regarding the functions of the various carotenoids (Son et al. Chem. 2019, 5 (3), 575-584). Also, our results demonstrate that FSRS can be used in combination with GTA to simultaneously study the electronic and vibrational landscapes in LHCs and pave the way for in-depth studies of photoprotective conformations in photosynthetic systems.
RESUMO
Steady-state and transient absorption spectra with <50 fs time resolution were obtained for two conjugated polymers, both with ≈200 conjugated double bonds (N), constrained in planar, stable, polyene frameworks. Solutions of the polymers exhibit the same S2 â S1 â S* â S0 decay pathway observed for the N = 11-19 polyene oligomers and for zeaxanthin homologues with N = 11-23. Comparisons with the excited state dynamics of polydiactylene and a much longer, more disordered polyene polymer (poly(DEDPM)) show that the S2, S1, and S* lifetimes of the four polymers are almost identical. The S* signals in the polymers are assigned to absorption from vibrationally excited ground states. In spite of significant heterogeneities and variations in conjugation lengths in these long polyenes, their S0 â S2 absorptions are vibronically-resolved in room temperature solutions with electronic origins at ≈600 nm. The limiting wavelength for the S0 â S2 transitions is consistent with the persistence of bond length alternation in the electronic ground states and a HOMO-LUMO band gap in polyenes with N ≈ 200. The coincidence of the well-resolved S0 â S2 electronic origins and the convergence of the excited state lifetimes in the four polymers point to a common, "nearly infinite" polyene limit.
RESUMO
Flavin mononucleotide (FMN) belongs to the large family of flavins, ubiquitous yellow-coloured biological chromophores that contain an isoalloxazine ring system. As a cofactor in flavoproteins, it is found in various enzymes and photosensory receptors, like those featuring the light-oxygen-voltage (LOV) domain. The photocycle of FMN is triggered by blue light and proceeds via a cascade of intermediate states. In this work, we have studied isolated FMN in an aqueous solution in order to elucidate the intrinsic electronic and vibrational changes of the chromophore upon excitation. The ultrafast transitions of excited FMN were monitored through the joint use of femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy encompassing a time window between 0 ps and 6 ns with 50 fs time resolution. Global analysis of the obtained transient visible absorption and transient Raman spectra in combination with extensive quantum chemistry calculations identified unambiguously the singlet and triplet FMN populations and addressed solvent dynamics effects. The good agreement between the experimental and theoretical spectra facilitated the assignment of electronic transitions and vibrations. Our results represent the first steps towards more complex experiments aimed at tracking structural changes of FMN embedded in light-inducible proteins upon photoexcitation.
Assuntos
Mononucleotídeo de Flavina/química , Processos Fotoquímicos , Análise Espectral Raman , Simulação por Computador , Mononucleotídeo de Flavina/metabolismoRESUMO
Time-resolved femtosecond stimulated Raman spectra (FSRS) of a prototypical organometallic photosensitizer/photocatalyst ReCl(CO)3(2,2'-bipyridine) were measured in a broad spectral range â¼40-2000 (4000) cm-1 at time delays from 40 fs to 4 ns after 400 nm excitation of the lowest allowed electronic transition. Theoretical ground- and excited-state Raman spectra were obtained by anharmonic vibrational analysis using second-order vibrational perturbation theory on vibrations calculated by harmonic approximation at density functional theory-optimized structures. A good match with anharmonically calculated vibrational frequencies allowed for assigning experimental Raman features to particular vibrations. Observed frequency shifts upon excitation (ν(ReCl) and ν(CC inter-ring) vibrations upward; ν(CC, CN) and ν(Re-C) downward) are consistent with the bonding/antibonding characters of the highest occupied molecular orbital and the lowest unoccupied molecular orbital involved in excitation and support the delocalized formulation of the lowest triplet state as ReCl(CO)3 â bpy charge transfer. FSRS spectra show a mode-specific temporal evolution, providing insights into the intersystem crossing (ISC) mechanism and subsequent relaxation. Most of the Raman features are present at â¼40 fs and exhibit small shifts and intensity changes with time. The 1450-1600 cm-1 group of bands due to CC, CN, and CC(inter-ring) stretching vibrations undergoes extensive restructuring between 40 and â¼150 fs, followed by frequency upshifts and a biexponential (0.38, 21 ps) area growth, indicating progressing charge separation in the course of the formation and relaxation of the lowest triplet state. Early (40-150 fs) restructuring was also observed in the low-frequency range for ν(Re-Cl) and δ(Re-C-O) vibrations that are presumably activated by ISC. FSRS experimental innovations employed to measure low- and high-energy Raman features simultaneously are described and discussed in detail.
RESUMO
The structural dynamics of charge-transfer states of nitrogen-ligated copper complexes has been extensively investigated in recent years following the development of pump-probe X-ray techniques. In this study we extend this approach towards copper complexes with sulfur coordination and investigate the influence of charge transfer states on the structure of a dicopper(i) complex with coordination by bridging disulfide ligands and additionally tetramethylguanidine units [CuI2(NSSN)2]2+. In order to directly observe and refine the photoinduced structural changes in the solvated complex we applied picosecond pump-probe X-ray absorption spectroscopy (XAS) and wide-angle X-ray scattering (WAXS). Additionally, the ultrafast evolution of the electronic excited states was monitored by femtosecond transient absorption spectroscopy in the UV-Vis probe range. DFT calculations were used to predict molecular geometries and electronic structures of the ground and metal-to-ligand charge transfer states with singlet and triplet spin multiplicities, i.e. S0, 1MLCT and 3MLCT, respectively. Combining these techniques we elucidate the electronic and structural dynamics of the solvated complex upon photoexcitation to the MLCT states. In particular, femtosecond optical transient spectroscopy reveals three distinct timescales of 650 fs, 10 ps and >100 ps, which were assigned as internal conversion to the ground state (Sn â S0), intersystem crossing 1MLCT â 3MLCT, and subsequent relaxation of the triplet to the ground state, respectively. Experimental data collected using both X-ray techniques are in agreement with the DFT-predicted structure for the triplet state, where coordination bond lengths change and one of the S-S bridges is cleaved, causing the movement of two halves of the molecule relative to each other. Extended X-ray absorption fine structure spectroscopy resolves changes in Cu-ligand bond lengths with precision on the order of 0.01 Å, whereas WAXS is sensitive to changes in the global shape related to relative movement of parts of the molecule. The results presented herein widen the knowledge on the electronic and structural dynamics of photoexcited copper-sulfur complexes and demonstrate the potential of combining the pump-probe X-ray absorption and scattering for studies on photoinduced structural dynamics in copper-based coordination complexes.
RESUMO
A new method for recording femtosecond stimulated Raman spectra was developed that dramatically improves and automatizes baseline problems. Instead of using a narrowband Raman source, the experiment is performed using shaping of a broadband source. This allows locking the signal into carefully crafted watermarks that can be recovered from measured data with high fidelity. The approach uses unique properties of Raman scattering, thus allowing a direct recording of stimulated Raman signals with robust rejection of baselines and fixed-pattern-noise. Low cost technology for generating required pulse-shapes was developed and demonstrated. The methodology is applicable to any Raman experiment but primarily targets Femtosecond Stimulated Raman spectroscopy (FSRS) where a lack of robust methods for parasitic signal rejection has been a major obstacle in the practical development of the field in the last decade. The delivered improvement in FSRS experiments was demonstrated by recording evidence that the so-called S* state of carotenoids in solution corresponds to the optically forbidden S1 state of a sparsely populated carotenoid conformation.
Assuntos
Carotenoides/química , Análise Espectral Raman , Razão Sinal-Ruído , Fatores de Tempo , Xantofilas/química , beta Caroteno/químicaRESUMO
Krokinobacter rhodopsin 2 (KR2) is a recently discovered light-driven Na(+) pump that holds significant promise for application as a neural silencer in optogenetics. KR2 transports Na(+) (in NaCl solution) or H(+) (in larger cation solution, e.g. in CsCl) during its photocycle. Here, we investigate the photochemistry of KR2 with the recently developed watermarked, baseline-free femto- to submillisecond transient stimulated Raman spectroscopy (TSRS), which enables us to investigate retinal chromophore dynamics in real time with high spectral resolution over a large time range. We propose a new photocycle from femtoseconds to submilliseconds: J (formed in â¼200 fs) â K (â¼3 ps) â K/L1 (â¼20 ps) â K/L2 (â¼30 ns) â L/M (â¼20 µs). KR2 binds a Na(+) ion that is not transported on the extracellular side, of which the function is unclear. We demonstrate with TSRS that for the D102N mutant in NaCl (with Na(+) unbound, Na(+) transport) and for WT KR2 in CsCl (with Na(+) unbound, H(+) transport), the extracellular Na(+) binding significantly influences the intermediate K/L/M state equilibrium on the photocycle, while the identity of the transported ion, Na(+) or H(+), does not affect the photocycle. Our findings will contribute to further elucidation of the molecular mechanisms of KR2.
RESUMO
UVR8 is a novel UV-B photoreceptor that regulates a range of plant responses and is already used as a versatile optogenetic tool. Instead of an exogenous chromophore, UVR8 uniquely employs tryptophan side chains to accomplish UV-B photoreception. UV-B absorption by homodimeric UVR8 induces monomerization and hence signaling, but the underlying photodynamic mechanisms are not known. Here, by using a combination of time-resolved fluorescence and absorption spectroscopy from femto- to microseconds, we provide the first experimental evidence for the UVR8 molecular signaling mechanism. The results indicate that tryptophan residues at the dimer interface engage in photoinduced proton coupled electron transfer reactions that induce monomerization.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas Cromossômicas não Histona/química , Transporte de Elétrons , Elétrons , Luz , Modelos Moleculares , Processos Fotoquímicos , Multimerização Proteica , Prótons , Espectrometria de FluorescênciaRESUMO
Upconversion is a promising way to trigger high-energy photochemistry with low-energy photons. However, combining upconversion schemes with non-radiative energy transfer is challenging because bringing several photochemically active components in close proximity results in complex multi-component systems where quenching processes may deactivate the whole assembly. In this work, PEGylated liposomes were prepared that contained three photoactive components: a porphyrin dye absorbing red light, a perylene moiety emitting in the blue, and a light-activatable ruthenium prodrug sensitive to blue light. Time-dependent spectroscopic studies demonstrate that singlet perylene excited states are non-radiatively transferred to the nearby ruthenium complex by Förster resonance energy transfer (FRET). Under red-light irradiation of the three-component membranes, triplet-triplet annihilation upconversion (TTA-UC) occurs followed by FRET, which results in a more efficient activation of the ruthenium prodrug compared to a physical mixture of two-component upconverting liposomes and liposomes containing only the ruthenium complex. This work represents a rare example where TTA-UC and Förster resonance energy transfer are combined to achieve prodrug activation in the phototherapeutic window.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Luz , Lipossomos/química , Compostos Organometálicos/química , Processos Fotoquímicos , Rutênio/química , Transferência de Energia , Estrutura MolecularRESUMO
Femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption data measured in a single experiment are used to determine the vibronic properties of the S1 state of linear carotenoids with different conjugation lengths. The Raman band corresponding to the CâC stretching mode in the S1 state peaks at 1799 cm-1 (neurosporene), 1802 cm-1 (spheroidene), and 1791 cm-1 (lycopene). Contrary to the ground state CâC mode, variation of the CâC stretching mode in the S1 state is small and does not follow a linear dependence on N. The lifetime of the Raman band matches the S1 decays obtained from transient absorption, confirming its S1 state origin. Direct comparison of transient absorption and FSRS signals allowed us to assign Raman signatures of nonrelaxed S1 and S0 states. For lycopene, FSRS data identified a component associated with a downshifted ground state CâC mode, which matches the dynamics of the S* signal observed in transient absorption data.
RESUMO
Target analysis is employed to resolve the ground and excited state properties from simultaneously measured Femtosecond Stimulated Raman Spectra (FSRS) and Transient Absorption Spectra (TAS). FSRS is a three-pulse technique, involving picosecond Raman pump pulses and femtosecond visible pump and probe pulses. The TAS are needed to precisely estimate the properties of the Instrument Response Function. The prezero "coherent artifact" present during the overlap of the three pulses is described by a damped oscillation with a frequency (ω - ωn) where ωn is a ground state resonance Raman frequency. Simultaneous target analysis of the FSRS and TAS allows the complete excited state dynamics to be resolved with a time resolution better than 100 fs. The model system studied is the carotenoid lycopene in tetrahydrofuran. The lycopene dynamics show a spectral evolution with seven states, including a biphasic cooling process during the S2-S1 internal conversion, multiple S1 lifetimes, and an S* state decaying with a lifetime of 7 ps.
RESUMO
In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
Assuntos
Carotenoides , Análise Espectral Raman , Vibração , Carotenoides/química , Carotenoides/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismoRESUMO
Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm-1, which covers only part of the spectrum of biologically relevant time scales and Raman shifts. Here we report on a broadband (~200-2200 cm-1) dual transient visible absorption (visTA)/FSRS set-up that can accommodate time delays from a few femtoseconds to several hundreds of microseconds after illumination with an actinic pump. The extended time scale and wavenumber range allowed us to monitor the complete excited-state dynamics of the biological chromophore flavin mononucleotide (FMN), both free in solution and embedded in two variants of the bacterial light-oxygen-voltage (LOV) photoreceptor EL222. The observed lifetimes and intermediate states (singlet, triplet, and adduct) are in agreement with previous time-resolved infrared spectroscopy experiments. Importantly, we found evidence for additional dynamical events, particularly upon analysis of the low-frequency Raman region below 1000 cm-1. We show that fs-to-sub-ms visTA/FSRS with a broad wavenumber range is a useful tool to characterize short-lived conformationally excited states in flavoproteins and potentially other light-responsive proteins.