Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Age Ageing ; 52(1)2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36729471

RESUMO

BACKGROUND: walking is crucial for an active and healthy ageing, but the perspectives of individuals living with walking impairment are still poorly understood. OBJECTIVES: to identify and synthesise evidence describing walking as experienced by adults living with mobility-impairing health conditions and to propose an empirical conceptual framework of walking experience. METHODS: we performed a systematic review and meta-ethnography of qualitative evidence, searching seven electronic databases for records that explored personal experiences of walking in individuals living with conditions of diverse aetiology. Conditions included Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture, heart failure, frailty and sarcopenia. Data were extracted, critically appraised using the NICE quality checklist and synthesised using standardised best practices. RESULTS: from 2,552 unique records, 117 were eligible. Walking experience was similar across conditions and described by seven themes: (i) becoming aware of the personal walking experience, (ii) the walking experience as a link between individuals' activities and sense of self, (iii) the physical walking experience, (iv) the mental and emotional walking experience, (v) the social walking experience, (vi) the context of the walking experience and (vii) behavioural and attitudinal adaptations resulting from the walking experience. We propose a novel conceptual framework that visually represents the walking experience, informed by the interplay between these themes. CONCLUSION: a multi-faceted and dynamic experience of walking was common across health conditions. Our conceptual framework of the walking experience provides a novel theoretical structure for patient-centred clinical practice, research and public health.


Assuntos
Antropologia Cultural , Caminhada , Humanos , Pesquisa Qualitativa , Antropologia Cultural/métodos
2.
J Neuroeng Rehabil ; 20(1): 78, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316858

RESUMO

BACKGROUND: Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS: Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS: We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS: Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.


Assuntos
Tecnologia Digital , Fraturas Proximais do Fêmur , Humanos , Idoso , Marcha , Caminhada , Velocidade de Caminhada , Modalidades de Fisioterapia
3.
J Neuroeng Rehabil ; 19(1): 141, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36522646

RESUMO

BACKGROUND: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. METHODS: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants' strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson's disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. RESULTS: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. CONCLUSIONS: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. TRIAL REGISTRATION: ISRCTN-12246987.


Assuntos
Marcha , Doença de Parkinson , Adulto , Humanos , Caminhada , Velocidade de Caminhada , Projetos de Pesquisa
4.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591054

RESUMO

Indoor localization and human activity recognition are two important sources of information to provide context-based assistance. This information is relevant in ambient assisted living (AAL) scenarios, where older adults usually need supervision and assistance in their daily activities. However, indoor localization and human activity recognition have been mostly considered isolated problems. This work presents and evaluates a framework that takes advantage of the relationship between location and activity to simultaneously perform indoor localization, mapping, and human activity recognition. The proposed framework provides a non-intrusive configuration, which fuses data from an inertial measurement unit (IMU) placed in the person's shoe, with proximity and human activity-related data from Bluetooth low energy beacons (BLE) deployed in the indoor environment. A variant of the simultaneous location and mapping (SLAM) framework was used to fuse the location and human activity recognition (HAR) data. HAR was performed using data streaming algorithms. The framework was evaluated in a pilot study, using data from 22 people, 11 young people, and 11 older adults (people aged 65 years or older). As a result, seven activities of daily living were recognized with an F1 score of 88%, and the in-door location error was 0.98 ± 0.36 m for the young and 1.02 ± 0.24 m for the older adults. Furthermore, there were no significant differences between the groups, indicating that our proposed method works adequately in broad age ranges.


Assuntos
Inteligência Ambiental , Atividades Cotidianas , Adolescente , Idoso , Algoritmos , Atividades Humanas , Humanos , Projetos Piloto
5.
Sensors (Basel) ; 22(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957406

RESUMO

Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package.


Assuntos
Software , Interface Usuário-Computador , Algoritmos , Humanos , Aprendizado de Máquina
6.
J Med Internet Res ; 23(11): e24460, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779788

RESUMO

BACKGROUND: Patient-centered health care information systems (PHSs) enable patients to take control and become knowledgeable about their own health, preferably in a secure environment. Current and emerging PHSs use either a centralized database, peer-to-peer (P2P) technology, or distributed ledger technology for PHS deployment. The evolving COVID-19 decentralized Bluetooth-based tracing systems are examples of disease-centric P2P PHSs. Although using P2P technology for the provision of PHSs can be flexible, scalable, resilient to a single point of failure, and inexpensive for patients, the use of health information on P2P networks poses major security issues as users must manage information security largely by themselves. OBJECTIVE: This study aims to identify the inherent security issues for PHS deployment in P2P networks and how they can be overcome. In addition, this study reviews different P2P architectures and proposes a suitable architecture for P2P PHS deployment. METHODS: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. Thematic analysis was used for data analysis. We searched the following databases: IEEE Digital Library, PubMed, Science Direct, ACM Digital Library, Scopus, and Semantic Scholar. The search was conducted on articles published between 2008 and 2020. The Common Vulnerability Scoring System was used as a guide for rating security issues. RESULTS: Our findings are consolidated into 8 key security issues associated with PHS implementation and deployment on P2P networks and 7 factors promoting them. Moreover, we propose a suitable architecture for P2P PHSs and guidelines for the provision of PHSs while maintaining information security. CONCLUSIONS: Despite the clear advantages of P2P PHSs, the absence of centralized controls and inconsistent views of the network on some P2P systems have profound adverse impacts in terms of security. The security issues identified in this study need to be addressed to increase patients' intention to use PHSs on P2P networks by making them safe to use.


Assuntos
COVID-19 , Sistemas de Informação em Saúde , Confidencialidade , Humanos , Assistência Centrada no Paciente , SARS-CoV-2
7.
J Neuroeng Rehabil ; 18(1): 93, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082762

RESUMO

BACKGROUND: To objectively assess a patient's gait, a robust identification of stride borders is one of the first steps in inertial sensor-based mobile gait analysis pipelines. While many different methods for stride segmentation have been presented in the literature, an out-of-lab evaluation of respective algorithms on free-living gait is still missing. METHOD: To address this issue, we present a comprehensive free-living evaluation dataset, including 146.574 semi-automatic labeled strides of 28 Parkinson's Disease patients. This dataset was used to evaluate the segmentation performance of a new Hidden Markov Model (HMM) based stride segmentation approach compared to an available dynamic time warping (DTW) based method. RESULTS: The proposed HMM achieved a mean F1-score of 92.1% and outperformed the DTW approach significantly. Further analysis revealed a dependency of segmentation performance to the number of strides within respective walking bouts. Shorter bouts ([Formula: see text] strides) resulted in worse performance, which could be related to more heterogeneous gait and an increased diversity of different stride types in short free-living walking bouts. In contrast, the HMM reached F1-scores of more than 96.2% for longer bouts ([Formula: see text] strides). Furthermore, we showed that an HMM, which was trained on at-lab data only, could be transferred to a free-living context with a negligible decrease in performance. CONCLUSION: The generalizability of the proposed HMM is a promising feature, as fully labeled free-living training data might not be available for many applications. To the best of our knowledge, this is the first evaluation of stride segmentation performance on a large scale free-living dataset. Our proposed HMM-based approach was able to address the increased complexity of free-living gait data, and thus will help to enable a robust assessment of stride parameters in future free-living gait analysis applications.


Assuntos
Doença de Parkinson , Algoritmos , Marcha , Análise da Marcha , Humanos , Caminhada
8.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640878

RESUMO

Climbing stairs is a fundamental part of daily life, adding additional demands on the postural control system compared to level walking. Although real-world gait analysis studies likely contain stair ambulation sequences, algorithms dedicated to the analysis of such activities are still missing. Therefore, we propose a new gait analysis pipeline for foot-worn inertial sensors, which can segment, parametrize, and classify strides from continuous gait sequences that include level walking, stair ascending, and stair descending. For segmentation, an existing approach based on the hidden Markov model and a feature-based gait event detection were extended, reaching an average segmentation F1 score of 98.5% and gait event timing errors below ±10ms for all conditions. Stride types were classified with an accuracy of 98.2% using spatial features derived from a Kalman filter-based trajectory reconstruction. The evaluation was performed on a dataset of 20 healthy participants walking on three different staircases at different speeds. The entire pipeline was additionally validated end-to-end on an independent dataset of 13 Parkinson's disease patients. The presented work aims to extend real-world gait analysis by including stair ambulation parameters in order to gain new insights into mobility impairments that can be linked to clinically relevant conditions such as a patient's fall risk and disease state or progression.


Assuntos
Análise da Marcha , Caminhada , Algoritmos , , Marcha , Humanos
9.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34833755

RESUMO

Digital technologies provide the opportunity to analyze gait patterns in patients with Parkinson's Disease using wearable sensors in clinical settings and a home environment. Confirming the technical validity of inertial sensors with a 3D motion capture system is a necessary step for the clinical application of sensor-based gait analysis. Therefore, the objective of this study was to compare gait parameters measured by a mobile sensor-based gait analysis system and a motion capture system as the gold standard. Gait parameters of 37 patients were compared between both systems after performing a standardized 5 × 10 m walking test by reliability analysis using intra-class correlation and Bland-Altman plots. Additionally, gait parameters of an age-matched healthy control group (n = 14) were compared to the Parkinson cohort. Gait parameters representing bradykinesia and short steps showed excellent reliability (ICC > 0.96). Shuffling gait parameters reached ICC > 0.82. In a stridewise synchronization, no differences were observed for gait speed, stride length, stride time, relative stance and swing time (p > 0.05). In contrast, heel strike, toe off and toe clearance significantly differed between both systems (p < 0.01). Both gait analysis systems distinguish Parkinson patients from controls. Our results indicate that wearable sensors generate valid gait parameters compared to the motion capture system and can consequently be used for clinically relevant gait recordings in flexible environments.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Marcha , Análise da Marcha , Humanos , Doença de Parkinson/diagnóstico , Reprodutibilidade dos Testes , Caminhada
10.
J Neuroeng Rehabil ; 17(1): 165, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339530

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a disabling disease affecting the central nervous system and consequently the whole body's functional systems resulting in different gait disorders. Fatigue is the most common symptom in MS with a prevalence of 80%. Previous research studied the relation between fatigue and gait impairment using stationary gait analysis systems and short gait tests (e.g. timed 25 ft walk). However, wearable inertial sensors providing gait data from longer and continuous gait bouts have not been used to assess the relation between fatigue and gait parameters in MS. Therefore, the aim of this study was to evaluate the association between fatigue and spatio-temporal gait parameters extracted from wearable foot-worn sensors and to predict the degree of fatigue. METHODS: Forty-nine patients with MS (32 women; 17 men; aged 41.6 years, EDSS 1.0-6.5) were included where each participant was equipped with a small Inertial Measurement Unit (IMU) on each foot. Spatio-temporal gait parameters were obtained from the 6-min walking test, and the Borg scale of perceived exertion was used to represent fatigue. Gait parameters were normalized by taking the difference of averaged gait parameters between the beginning and end of the test to eliminate inter-individual differences. Afterwards, normalized parameters were transformed to principle components that were used as input to a Random Forest regression model to formulate the relationship between gait parameters and fatigue. RESULTS: Six principal components were used as input to our model explaining more than 90% of variance within our dataset. Random Forest regression was used to predict fatigue. The model was validated using 10-fold cross validation and the mean absolute error was 1.38 points. Principal components consisting mainly of stride time, maximum toe clearance, heel strike angle, and stride length had large contributions (67%) to the predictions made by the Random Forest. CONCLUSIONS: The level of fatigue can be predicted based on spatio-temporal gait parameters obtained from an IMU based system. The results can help therapists to monitor fatigue before and after treatment and in rehabilitation programs to evaluate their efficacy. Furthermore, this can be used in home monitoring scenarios where therapists can monitor fatigue using IMUs reducing time and effort of patients and therapists.


Assuntos
Fadiga/diagnóstico , Fadiga/etiologia , Análise da Marcha/instrumentação , Esclerose Múltipla/complicações , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Medidas de Resultados Relatados pelo Paciente
11.
Sensors (Basel) ; 20(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842566

RESUMO

Indoor location estimation is crucial to provide context-based assistance in home environments. In this study, a method for simultaneous indoor pedestrian localization and house mapping is proposed and evaluated. The method fuses a person's movement data from an Inertial Measurement Unit (IMU) with proximity and activity-related data from Bluetooth Low-Energy (BLE) beacons deployed in the indoor environment. The person's and beacons' localization is performed simultaneously using a combination of particle and Kalman Filters. We evaluated the method using data from eight participants who performed different activities in an indoor environment. As a result, the average participant's localization error was 1.05 ± 0.44 m, and the average beacons' localization error was 0.82 ± 0.24 m. The proposed method is able to construct a map of the indoor environment by localizing the BLE beacons and simultaneously locating the person. The results obtained demonstrate that the proposed method could point to a promising roadmap towards the development of simultaneous localization and home mapping system based only on one IMU and a few BLE beacons. To the best of our knowledge, this is the first method that includes the beacons' data movement as activity-related events in a method for pedestrian Simultaneous Localization and Mapping (SLAM).

12.
Sensors (Basel) ; 20(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991597

RESUMO

The evaluation of trajectory reconstruction of the human body obtained by foot-mounted Inertial Pedestrian Dead-Reckoning (IPDR) methods has usually been carried out in controlled environments, with very few participants and limited to walking. In this study, a pipeline for trajectory reconstruction using a foot-mounted IPDR system is proposed and evaluated in two large datasets containing activities that involve walking, jogging, and running, as well as movements such as side and backward strides, sitting, and standing. First, stride segmentation is addressed using a multi-subsequence Dynamic Time Warping method. Then, detection of Toe-Off and Mid-Stance is performed by using two new algorithms. Finally, stride length and orientation estimation are performed using a Zero Velocity Update algorithm empowered by a complementary Kalman filter. As a result, the Toe-Off detection algorithm reached an F-score between 90% and 100% for activities that do not involve stopping, and between 71% and 78% otherwise. Resulting return position errors were in the range of 0.5% to 8.8% for non-stopping activities and 8.8% to 27.4% otherwise. The proposed pipeline is able to reconstruct indoor trajectories of people performing activities that involve walking, jogging, running, side and backward walking, sitting, and standing.


Assuntos
Corrida Moderada , Corrida , Caminhada , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Arquitetura de Instituições de Saúde , , Humanos
14.
Sensors (Basel) ; 17(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832511

RESUMO

Mobile gait analysis systems based on inertial sensing on the shoe are applied in a wide range of applications. Especially for medical applications, they can give new insights into motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key component in these systems is the reconstruction of the foot trajectories from inertial data. In literature, various methods for this task have been proposed. However, performance is evaluated on a variety of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair comparison of methods. In this work, we implement three orientation estimation and three double integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from literature and evaluated against a marker-based motion capture reference. We provide a fair comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result, the implemented methods are ranked and we identify the most suitable processing pipeline for foot trajectory estimation in the context of mobile gait analysis.


Assuntos
Marcha , Benchmarking , , Humanos
15.
Sensors (Basel) ; 17(7)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657587

RESUMO

The purpose of this study was to assess the concurrent validity and test-retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson's disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a reference camera-based motion capture system concerning concurrent validity. Test-retest reliability was assessed for five healthy subjects at three different days in a two week period. The two systems were highly correlated for all gait parameters ( r > 0.93 ). The bias for stride time was 0 ± 16 ms and for stride length was 1.4 ± 6.7 cm. No systematic range dependent errors were observed and no significant changes existed between healthy subjects and PD patients. Test-retest reliability was excellent for all parameters (intraclass correlation (ICC) > 0.81) except for gait velocity (ICC > 0.55). The sensor-based system was able to accurately capture spatio-temporal gait parameters as compared to the reference camera-based system for normal and impaired gait. The system's high retest reliability renders the use in recurrent clinical measurements and in long-term applications feasible.


Assuntos
Marcha , , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
16.
Res Sq ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38559043

RESUMO

Progressive gait impairment is common in aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1,000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised gait detection method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults.

17.
BMJ Open ; 14(5): e081317, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692728

RESUMO

INTRODUCTION: Gait and mobility impairment are pivotal signs of parkinsonism, and they are particularly severe in atypical parkinsonian disorders including multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). A pilot study demonstrated a significant improvement of gait in patients with MSA of parkinsonian type (MSA-P) after physiotherapy and matching home-based exercise, as reflected by sensor-based gait parameters. In this study, we aim to investigate whether a gait-focused physiotherapy (GPT) and matching home-based exercise lead to a greater improvement of gait performance compared with a standard physiotherapy/home-based exercise programme (standard physiotherapy, SPT). METHODS AND ANALYSIS: This protocol was deployed to evaluate the effects of a GPT versus an active control undergoing SPT and matching home-based exercise with regard to laboratory gait parameters, physical activity measures and clinical scales in patients with Parkinson's disease (PD), MSA-P and PSP. The primary outcomes of the trial are sensor-based laboratory gait parameters, while the secondary outcome measures comprise real-world derived parameters, clinical rating scales and patient questionnaires. We aim to enrol 48 patients per disease group into this double-blind, randomised-controlled trial. The study starts with a 1 week wearable sensor-based monitoring of physical activity. After randomisation, patients undergo a 2 week daily inpatient physiotherapy, followed by 5 week matching unsupervised home-based training. A 1 week physical activity monitoring is repeated during the last week of intervention. ETHICS AND DISSEMINATION: This study, registered as 'Mobility in Atypical Parkinsonism: a Trial of Physiotherapy (Mobility_APP)' at clinicaltrials.gov (NCT04608604), received ethics approval by local committees of the involved centres. The patient's recruitment takes place at the Movement Disorders Units of Innsbruck (Austria), Erlangen (Germany), Lausanne (Switzerland), Luxembourg (Luxembourg) and Bolzano (Italy). The data resulting from this project will be submitted to peer-reviewed journals, presented at international congresses and made publicly available at the end of the trial. TRIAL REGISTRATION NUMBER: NCT04608604.


Assuntos
Terapia por Exercício , Transtornos Parkinsonianos , Modalidades de Fisioterapia , Humanos , Terapia por Exercício/métodos , Transtornos Parkinsonianos/reabilitação , Transtornos Parkinsonianos/terapia , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto , Marcha , Doença de Parkinson/reabilitação , Doença de Parkinson/terapia , Atrofia de Múltiplos Sistemas/reabilitação , Atrofia de Múltiplos Sistemas/terapia , Paralisia Supranuclear Progressiva/terapia , Paralisia Supranuclear Progressiva/reabilitação , Serviços de Assistência Domiciliar , Idoso , Masculino , Feminino , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia
18.
IEEE Open J Eng Med Biol ; 5: 163-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487091

RESUMO

Goal: Gait analysis using inertial measurement units (IMUs) has emerged as a promising method for monitoring movement disorders. However, the lack of public data and easy-to-use open-source algorithms hinders method comparison and clinical application development. To address these challenges, this publication introduces the gaitmap ecosystem, a comprehensive set of open source Python packages for gait analysis using foot-worn IMUs. Methods: This initial release includes over 20 state-of-the-art algorithms, enables easy access to seven datasets, and provides eight benchmark challenges with reference implementations. Together with its extensive documentation and tooling, it enables rapid development and validation of new algorithm and provides a foundation for novel clinical applications. Conclusion: The published software projects represent a pioneering effort to establish an open-source ecosystem for IMU-based gait analysis. We believe that this work can democratize the access to high-quality algorithm and serve as a driver for open and reproducible research in the field of human gait analysis and beyond.

19.
JMIR Form Res ; 8: e50035, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691395

RESUMO

BACKGROUND: Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. OBJECTIVE: The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back-worn inertial sensors. METHODS: Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back-worn inertial sensors. RESULTS: The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. CONCLUSIONS: Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. TRIAL REGISTRATION: ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2021-050785.

20.
Sci Rep ; 14(1): 1754, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243008

RESUMO

This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987.


Assuntos
Velocidade de Caminhada , Dispositivos Eletrônicos Vestíveis , Humanos , Idoso , Marcha , Caminhada , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA