Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(1): 50-63.e12, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31923399

RESUMO

Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.


Assuntos
Imunidade nas Mucosas/imunologia , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Animais , Citocinas/imunologia , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Células Epiteliais/imunologia , Feminino , Células Caliciformes/imunologia , Interleucina-18/biossíntese , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Ratos , Ratos Sprague-Dawley , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia
2.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442406

RESUMO

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Assuntos
Infecções por Klebsiella/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Feminino , Memória Imunológica , Interleucina-17/genética , Interleucina-17/metabolismo , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/patogenicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/citologia , Células Th17/metabolismo
4.
Nature ; 627(8004): 628-635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383790

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Assuntos
Inflamação , Interleucina-10 , Esfingolipídeos , Animais , Humanos , Camundongos , Ceramidas/química , Ceramidas/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Homeostase , Imunidade Inata , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas Proto-Oncogênicas c-rel , Esfingolipídeos/metabolismo
5.
Nature ; 616(7955): 113-122, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922587

RESUMO

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Assuntos
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animais , Humanos , Camundongos , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análise de Célula Única , Especificidade de Órgãos , Encéfalo/embriologia , Encéfalo/metabolismo , Envelhecimento/genética
6.
Nature ; 606(7914): 585-593, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483404

RESUMO

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Assuntos
COVID-19 , Inflamassomos , Macrófagos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Inflamassomos/metabolismo , Interleucina-1 , Interleucina-18 , Pulmão/patologia , Pulmão/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Piroptose , Receptores de IgG , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
7.
Immunity ; 48(4): 716-729.e8, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29625895

RESUMO

Protective immunity against pathogens depends on the efficient generation of functionally diverse effector and memory T lymphocytes. However, whether plasticity during effector-to-memory CD8+ T cell differentiation affects memory lineage specification and functional versatility remains unclear. Using genetic fate mapping analysis of highly cytotoxic KLRG1+ effector CD8+ T cells, we demonstrated that KLRG1+ cells receiving intermediate amounts of activating and inflammatory signals downregulated KLRG1 during the contraction phase in a Bach2-dependent manner and differentiated into all memory T cell linages, including CX3CR1int peripheral memory cells and tissue-resident memory cells. "ExKLRG1" memory cells retained high cytotoxic and proliferative capacity distinct from other populations, which contributed to effective anti-influenza and anti-tumor immunity. Our work demonstrates that developmental plasticity of KLRG1+ effector CD8+ T cells is important in promoting functionally versatile memory cells and long-term protective immunity.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Receptores Imunológicos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Linhagem da Célula/imunologia , Vírus da Influenza A/imunologia , Subunidade p35 da Interleucina-12/imunologia , Lectinas Tipo C , Listeria monocytogenes/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Imunológicos/genética , Vírus da Estomatite Vesicular Indiana/imunologia
8.
Nature ; 580(7804): 524-529, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322056

RESUMO

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts1. Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types2,3. However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E2 (PGE2). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE2 drives the expansion οf a population of Sca-1+ reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1+ cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE2 promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1+ cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE2-Ptger4. Analyses of patient-derived organoids established that PGE2-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE2-Ptger4-Yap signalling axis.


Assuntos
Carcinogênese , Neoplasias Colorretais/patologia , Intestinos/patologia , Mesoderma/patologia , Células-Tronco Neoplásicas/patologia , Comunicação Parácrina , Nicho de Células-Tronco , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos Ly/metabolismo , Ácido Araquidônico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Organoides/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Análise de Célula Única , Proteínas de Sinalização YAP
9.
Nucleic Acids Res ; 52(2): 548-557, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38109302

RESUMO

High throughput sequencing of B cell receptors (BCRs) is increasingly applied to study the immense diversity of antibodies. Learning biologically meaningful embeddings of BCR sequences is beneficial for predictive modeling. Several embedding methods have been developed for BCRs, but no direct performance benchmarking exists. Moreover, the impact of the input sequence length and paired-chain information on the prediction remains to be explored. We evaluated the performance of multiple embedding models to predict BCR sequence properties and receptor specificity. Despite the differences in model architectures, most embeddings effectively capture BCR sequence properties and specificity. BCR-specific embeddings slightly outperform general protein language models in predicting specificity. In addition, incorporating full-length heavy chains and paired light chain sequences improves the prediction performance of all embeddings. This study provides insights into the properties of BCR embeddings to improve downstream prediction applications for antibody analysis and discovery.


Assuntos
Processamento de Linguagem Natural , Receptores de Antígenos de Linfócitos B , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoglobulinas , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/genética , Sequência de Aminoácidos , Humanos
10.
Proc Natl Acad Sci U S A ; 120(37): e2306965120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669366

RESUMO

Fibrosis is regulated by interactions between immune and mesenchymal cells. However, the capacity of cell types to modulate human fibrosis pathology is poorly understood due to lack of a fully humanized model system. MISTRG6 mice were engineered by homologous mouse/human gene replacement to develop an immune system like humans when engrafted with human hematopoietic stem cells (HSCs). We utilized MISTRG6 mice to model scleroderma by transplantation of healthy or scleroderma skin from a patient with pansclerotic morphea to humanized mice engrafted with unmatched allogeneic HSC. We identified that scleroderma skin grafts contained both skin and bone marrow-derived human CD4 and CD8 T cells along with human endothelial cells and pericytes. Unlike healthy skin, fibroblasts in scleroderma skin were depleted and replaced by mouse fibroblasts. Furthermore, HSC engraftment alleviated multiple signatures of fibrosis, including expression of collagen and interferon genes, and proliferation and activation of human T cells. Fibrosis improvement correlated with reduced markers of T cell activation and expression of human IL-6 by mesenchymal cells. Mechanistic studies supported a model whereby IL-6 trans-signaling driven by CD4 T cell-derived soluble IL-6 receptor complexed with fibroblast-derived IL-6 promoted excess extracellular matrix gene expression. Thus, MISTRG6 mice transplanted with scleroderma skin demonstrated multiple fibrotic responses centered around human IL-6 signaling, which was improved by the presence of healthy bone marrow-derived immune cells. Our results highlight the importance of IL-6 trans-signaling in pathogenesis of scleroderma and the ability of healthy bone marrow-derived immune cells to mitigate disease.


Assuntos
Basidiomycota , Esclerodermia Localizada , Humanos , Animais , Camundongos , Interleucina-6 , Células Endoteliais , Pele , Modelos Animais de Doenças
12.
Nature ; 571(7765): 403-407, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31217581

RESUMO

Activated CD4 T cells proliferate rapidly and remodel epigenetically before exiting the cell cycle and engaging acquired effector functions. Metabolic reprogramming from the naive state is required throughout these phases of activation1. In CD4 T cells, T-cell-receptor ligation-along with co-stimulatory and cytokine signals-induces a glycolytic anabolic program that is required for biomass generation, rapid proliferation and effector function2. CD4 T cell differentiation (proliferation and epigenetic remodelling) and function are orchestrated coordinately by signal transduction and transcriptional remodelling. However, it remains unclear whether these processes are regulated independently of one another by cellular biochemical composition. Here we demonstrate that distinct modes of mitochondrial metabolism support differentiation and effector functions of mouse T helper 1 (TH1) cells by biochemically uncoupling these two processes. We find that the tricarboxylic acid cycle is required for the terminal effector function of TH1 cells through succinate dehydrogenase (complex II), but that the activity of succinate dehydrogenase suppresses TH1 cell proliferation and histone acetylation. By contrast, we show that complex I of the electron transport chain, the malate-aspartate shuttle and mitochondrial citrate export are required to maintain synthesis of aspartate, which is necessary for the proliferation of T helper cells. Furthermore, we find that mitochondrial citrate export and the malate-aspartate shuttle promote histone acetylation, and specifically regulate the expression of genes involved in T cell activation. Combining genetic, pharmacological and metabolomics approaches, we demonstrate that the differentiation and terminal effector functions of T helper cells are biochemically uncoupled. These findings support a model in which the malate-aspartate shuttle, mitochondrial citrate export and complex I supply the substrates needed for proliferation and epigenetic remodelling early during T cell activation, whereas complex II consumes the substrates of these pathways, which antagonizes differentiation and enforces terminal effector function. Our data suggest that transcriptional programming acts together with a parallel biochemical network to enforce cell state.


Assuntos
Diferenciação Celular , Mitocôndrias/metabolismo , Células Th1/citologia , Células Th1/imunologia , Acetilação , Animais , Ácido Aspártico/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Transporte de Elétrons , Feminino , Histonas/metabolismo , Humanos , Ativação Linfocitária/genética , Malatos/metabolismo , Masculino , Camundongos , Succinato Desidrogenase/metabolismo , Células Th1/metabolismo , Transcrição Gênica
13.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458905

RESUMO

MOTIVATION: Recent years have seen the release of several toolsets that reveal cell-cell interactions from single-cell data. However, all existing approaches leverage mean celltype gene expression values, and do not preserve the single-cell fidelity of the original data. Here, we present NICHES (Niche Interactions and Communication Heterogeneity in Extracellular Signaling), a tool to explore extracellular signaling at the truly single-cell level. RESULTS: NICHES allows embedding of ligand-receptor signal proxies to visualize heterogeneous signaling archetypes within cell clusters, between cell clusters and across experimental conditions. When applied to spatial transcriptomic data, NICHES can be used to reflect local cellular microenvironment. NICHES can operate with any list of ligand-receptor signaling mechanisms, is compatible with existing single-cell packages, and allows rapid, flexible analysis of cell-cell signaling at single-cell resolution. AVAILABILITY AND IMPLEMENTATION: NICHES is an open-source software implemented in R under academic free license v3.0 and it is available at http://github.com/msraredon/NICHES. Use-case vignettes are available at https://msraredon.github.io/NICHES/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Transcriptoma , Ligantes , Perfilação da Expressão Gênica , Comunicação Celular
14.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34001664

RESUMO

Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.


Assuntos
Envelhecimento/genética , COVID-19/genética , Linhagem da Célula/genética , Melanoma/genética , RNA Citoplasmático Pequeno/genética , Neoplasias Cutâneas/genética , Envelhecimento/metabolismo , Linfócitos B/imunologia , Linfócitos B/virologia , Encéfalo/citologia , Encéfalo/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Linhagem da Célula/imunologia , Citocinas/genética , Citocinas/imunologia , Conjuntos de Dados como Assunto , Células Dendríticas/imunologia , Células Dendríticas/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Melanoma/imunologia , Melanoma/patologia , Monócitos/imunologia , Monócitos/virologia , Fenótipo , RNA Citoplasmático Pequeno/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Análise de Célula Única/métodos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Linfócitos T/virologia , Transcriptoma
15.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33446502

RESUMO

Haematopoiesis relies on tightly controlled gene expression patterns as development proceeds through a series of progenitors. While the regulation of hematopoietic development has been well studied, the role of noncoding elements in this critical process is a developing field. In particular, the discovery of new regulators of lymphopoiesis could have important implications for our understanding of the adaptive immune system and disease. Here we elucidate how a noncoding element is capable of regulating a broadly expressed transcription factor, Ikaros, in a lymphoid lineage-specific manner, such that it imbues Ikaros with the ability to specify the lymphoid lineage over alternate fates. Deletion of the Daedalus locus, which is proximal to Ikaros, led to a severe reduction in early lymphoid progenitors, exerting control over the earliest fate decisions during lymphoid lineage commitment. Daedalus locus deletion led to alterations in Ikaros isoform expression and a significant reduction in Ikaros protein. The Daedalus locus may function through direct DNA interaction as Hi-C analysis demonstrated an interaction between the two loci. Finally, we identify an Ikaros-regulated erythroid-lymphoid checkpoint that is governed by Daedalus in a lymphoid-lineage-specific manner. Daedalus appears to act as a gatekeeper of Ikaros's broad lineage-specifying functions, selectively stabilizing Ikaros activity in the lymphoid lineage and permitting diversion to the erythroid fate in its absence. These findings represent a key illustration of how a transcription factor with broad lineage expression must work in concert with noncoding elements to orchestrate hematopoietic lineage commitment.


Assuntos
Hematopoese/genética , Fator de Transcrição Ikaros/genética , Linfopoese/genética , RNA não Traduzido/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos
16.
Entropy (Basel) ; 26(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38539769

RESUMO

Ensuring robustness of image classifiers against adversarial attacks and spurious correlation has been challenging. One of the most effective methods for adversarial robustness is a type of data augmentation that uses adversarial examples during training. Here, inspired by computational models of human vision, we explore a synthesis of this approach by leveraging a structured prior over image formation: the 3D geometry of objects and how it projects to images. We combine adversarial training with a weight initialization that implicitly encodes such a prior about 3D objects via 3D reconstruction pre-training. We evaluate our approach using two different datasets and compare it to alternative pre-training protocols that do not encode a prior about 3D shape. To systematically explore the effect of 3D pre-training, we introduce a novel dataset called Geon3D, which consists of simple shapes that nevertheless capture variation in multiple distinct dimensions of geometry. We find that while 3D reconstruction pre-training does not improve robustness for the simplest dataset setting, we consider (Geon3D on a clean background) that it improves upon adversarial training in more realistic (Geon3D with textured background and ShapeNet) conditions. We also find that 3D pre-training coupled with adversarial training improves the robustness to spurious correlations between shape and background textures. Furthermore, we show that the benefit of using 3D-based pre-training outperforms 2D-based pre-training on ShapeNet. We hope that these results encourage further investigation of the benefits of structured, 3D-based models of vision for adversarial robustness.

17.
Mol Cancer ; 22(1): 182, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964379

RESUMO

BACKGROUND: Stimulating inflammatory tumor associated macrophages can overcome resistance to PD-(L)1 blockade. We previously conducted a phase I trial of cabiralizumab (anti-CSF1R), sotigalimab (CD40-agonist) and nivolumab. Our current purpose was to study the activity and cellular effects of this three-drug regimen in anti-PD-1-resistant melanoma. METHODS: We employed a Simon's two-stage design and analyzed circulating immune cells from patients treated with this regimen for treatment-related changes. We assessed various dose levels of anti-CSF1R in murine melanoma models and studied the cellular and molecular effects. RESULTS: Thirteen patients were enrolled in the first stage. We observed one (7.7%) confirmed and one (7.7%) unconfirmed partial response, 5 patients had stable disease (38.5%) and 6 disease progression (42.6%). We elected not to proceed to the second stage. CyTOF analysis revealed a reduction in non-classical monocytes. Patients with prolonged stable disease or partial response who remained on study for longer had increased markers of antigen presentation after treatment compared to patients whose disease progressed rapidly. In a murine model, higher anti-CSF1R doses resulted in increased tumor growth and worse survival. Using single-cell RNA-sequencing, we identified a suppressive monocyte/macrophage population in murine tumors exposed to higher doses. CONCLUSIONS: Higher anti-CSF1R doses are inferior to lower doses in a preclinical model, inducing a suppressive macrophage population, and potentially explaining the disappointing results observed in patients. While it is impossible to directly infer human doses from murine studies, careful intra-species evaluation can provide important insight. Cabiralizumab dose optimization is necessary for this patient population with limited treatment options. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03502330.


Assuntos
Anticorpos Monoclonais , Melanoma , Humanos , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Nivolumabe/uso terapêutico , Melanoma/patologia , Receptores Proteína Tirosina Quinases
18.
Nature ; 548(7667): 338-342, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792938

RESUMO

N6-methyladenosine (m6A) is the most common and abundant messenger RNA modification, modulated by 'writers', 'erasers' and 'readers' of this mark. In vitro data have shown that m6A influences all fundamental aspects of mRNA metabolism, mainly mRNA stability, to determine stem cell fates. However, its in vivo physiological function in mammals and adult mammalian cells is still unknown. Here we show that the deletion of m6A 'writer' protein METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopaenic mouse adoptive transfer model, naive Mettl3-deficient T cells failed to undergo homeostatic expansion and remained in the naive state for up to 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding the STAT signalling inhibitory proteins SOCS1, SOCS3 and CISH were marked by m6A, exhibited slower mRNA decay and showed increased mRNAs and levels of protein expression in Mettl3-deficient naive T cells. This increased SOCS family activity consequently inhibited IL-7-mediated STAT5 activation and T cell homeostatic proliferation and differentiation. We also found that m6A has important roles for inducible degradation of Socs mRNAs in response to IL-7 signalling in order to reprogram naive T cells for proliferation and differentiation. Our study elucidates for the first time, to our knowledge, the in vivo biological role of m6A modification in T-cell-mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.


Assuntos
Adenosina/análogos & derivados , Homeostase , Interleucina-7/imunologia , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/citologia , Adenosina/metabolismo , Transferência Adotiva , Animais , Diferenciação Celular , Proliferação de Células , Colite/prevenção & controle , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Feminino , Masculino , Metilação , Metiltransferases/deficiência , Camundongos , Estabilidade de RNA , RNA Mensageiro/química , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Nature ; 546(7660): 667-670, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28636595

RESUMO

Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Inflamassomos/metabolismo , Intestinos/citologia , Receptores Acoplados a Proteínas G/metabolismo , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Rotavirus/imunologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , RNA Helicases DEAD-box/metabolismo , Células Epiteliais/metabolismo , Feminino , Imunidade Inata , Inflamassomos/química , Inflamassomos/genética , Interleucina-18/imunologia , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato , Piroptose , RNA de Cadeia Dupla/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/imunologia , Rotavirus/crescimento & desenvolvimento
20.
Cell Mol Life Sci ; 79(7): 377, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737114

RESUMO

We aimed to study mechanisms controlling metastatic outgrowth of melanoma into clinically relevant lesions, a critical process responsible for the majority of melanoma deaths. To this end, we developed novel in vivo models and identified molecular events that can be ascribed to their distinct phenotypes, indolent or highly metastatic. Induction of a proliferative state at distant sites was associated with high levels of the stem-like/progenitor marker, SOX2, and required the upregulation of FMOD, an extracellular matrix component, which modulates tumor-stroma interactions. Functional studies revealed a possible link between FMOD and SOX2; dual FMOD and SOX2 silencing nearly abolished brain metastasis and had a similar effect on distant metastasis to other sites. Our in vitro data suggests that FMOD and SOX2 cooperation plays an important role in tumor vasculogenic mimicry. Furthermore, we found that FMOD and SOX2 functional roles might converge at the activation of transcriptional co-factors YAP and TAZ, possibly via crosstalk with the tumor suppressor Hippo pathway. Finally, high expression of both genes in patient specimens predicted early development of brain metastasis. Thus, our study identifies FMOD and SOX2 cooperation as a novel regulatory mechanism that might be linked functionally to melanoma metastatic competence.


Assuntos
Melanoma , Neoplasias Encefálicas/secundário , Fibromodulina/genética , Fibromodulina/metabolismo , Humanos , Melanoma/genética , Metástase Neoplásica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA