Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056648

RESUMO

Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10-50% w/v. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders; a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break, and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle, melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a property needs to be improved and the application of the developed films should be investigated in the future work.


Assuntos
Oryza/química , Hidróxido de Sódio/química , Amido/análogos & derivados , Vapor , Temperatura , Resistência à Tração , Permeabilidade , Solubilidade , Amido/química , Amido/metabolismo
2.
Int J Biol Macromol ; 259(Pt 1): 129156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176494

RESUMO

This study aimed to combine various natural pH indicators of anthocyanin from Karanda (CA) with anthocyanin from butterfly pea flower (BA) or curcumin (CC) to improve the sensitivity of CA. CA75/BA25 and CA25/CC75 enhanced the sensitivity of the endpoint colour change of CA. A smart colorimetric sensing film was also developed and characterised by loading different natural pH indicators on carboxymethyl cellulose (CMC) films. The addition of different natural pH indicators increased the thickness, elongation, colour (a* and b* values), and contact angle of CMC films (p < 0.05). However, the tensile strength, water vapour permeability, film solubility, light transmission, and L* value decreased when different natural pH indicators were added (p < 0.05). The indicator films demonstrated enhanced antioxidant capacity and thermal stability. The FTIR spectra showed that natural pH indicators were successfully immobilised into the CMC films. Notably, the CMC/CA75/BA25 film was the most sensitive film to changes in volatile ammonia and different pH buffer solutions. The CMC/CA75/BA25 film changed from purple to green with exposure to ammonia solution and from pink to purple to blue to green with increasing pH. Therefore, the CMC/CA75/BA25 film has potential as a colorimetric sensing film, providing a more accurate assessment result.


Assuntos
Carboximetilcelulose Sódica , Colorimetria , Antocianinas , Amônia , Concentração de Íons de Hidrogênio , Embalagem de Alimentos
3.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631434

RESUMO

The objective of this study was to characterize the properties of cellulose and CMC synthesized from young and mature coconut coir with different bleaching times (bleaching for the first time; 1 BT, bleaching for a second time; 2 BT, and bleaching for the third time; 3 BT) using hydrogen peroxide (H2O2). The surface morphology, structural information, chemical compositions, and crystallinity of both cellulose and CMC were determined. H2O2 bleaching can support delignification by reducing hemicellulose and lignin, as evidenced by FTIR showing a sharp peak at wave number 1260 cm-1. The cellulose and CMC from coconut coir can be more dispersed and have greater functional characteristics with increasing bleaching times due to the change in accessibility of hydroxyl groups in the structure. The CMC diffraction patterns of coconut coir after the bleaching process showed the destruction of the crystalline region of the original cellulose. The SEM images showed that the surface of CMC was smoother than that of cellulose. The CMCy had a higher water holding capacity (WHC) compared to the CMCm as the bleaching can increase interaction between the polymer and water molecules. Therefore, the best quality of CMC corresponds to CMCy. Based on these findings, bleaching time has a strong effect on the functional properties of cellulose and CMC from coconut coir.

4.
Foods ; 12(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893708

RESUMO

The global plant-based protein demand is rapidly expanding in line with the increase in the world's population. In this study, ultrasonic-assisted extraction (UAE) was applied to extract protein from Wolffia globosa as an alternative source. Enzymatic hydrolysis was used to modify the protein properties for extended use as a functional ingredient. The successful optimal conditions for protein extraction included a liquid to solid ratio of 30 mL/g, 25 min of extraction time, and a 78% sonication amplitude, providing a higher protein extraction yield than alkaline extraction by about 2.17-fold. The derived protein was rich in essential amino acids, including leucine, valine, and phenylalanine. Protamex and Alcalase were used to prepare protein hydrolysates with different degrees of hydrolysis, producing protein fragments with molecular weights ranging between <10 and 61.5 kDa. Enzymatic hydrolysis caused the secondary structural transformations of proteins from ß-sheets and random coils to α-helix and ß-turn structures. Moreover, it influenced the protein functional properties, particularly enhancing the protein solubility and emulsifying activity. Partial hydrolysis (DH3%) improved the foaming properties of proteins; meanwhile, an excess hydrolysis degree reduced the emulsifying stability and oil-binding capacity. The produced protein hydrolysates showed potential as anti-cancer peptides on human ovarian cancer cell lines.

5.
Polymers (Basel) ; 14(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35567041

RESUMO

Carboxymethyl cellulose from young Palmyra palm fruit husk (CMCy) film has low water barrier properties, which can limit its application. Thus, the combination of CMCy with other polysaccharides, such as rice flour (RF), may solve this problem. The aim of this study is to prepare the CMCy/RF composite films in different proportions (CMCy100, CMCy75/RF25, CMCy50/RF50, CMCy25/RF75, and RF100) and investigate their mechanical and physicochemical properties. The film strength (33.36−12.99 MPa) and flexibility (9.81−3.95%) of the CMCy/RF composite films decreased significantly (p < 0.05) with an increase in the RF proportion. Blending the RF with CMCy could improve the water vapor permeability (9.25−6.18 × 10−8 g m m−2 s−1 Pa−1) and film solubility (82.70−21.64%) of the CMCy/RF composite films. Furthermore, an increased lightness with a coincidental decreased yellowness of the CMCy/RF composite films was pronounced when the RF proportion increased (p < 0.05). However, the addition of RF in different proportions did not influence the film thickness and transparency. Based on SEM micrographs, all film samples had a relatively coarser surface. FTIR spectra showed that some interactions between CMCy and RF blended films had occurred. According to these findings, the CMCy50/RF50 composite film was found to be the best formulation because it has good mechanical and physicochemical properties.

6.
Foods ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829044

RESUMO

Semi-dried gourami fish (Trichogaster pectoralis) is popularly consumed domestically and exported as a frozen product. This study was conducted to prevent deterioration quality in frozen fish fillets during storage. This research aims to investigate the effects of sorbitol and citric acid at concentrations of 2.5% and 5% (w/w) of frozen gourami fish fillets compared to the fillets soaked in distilled water on physicochemical properties, such as cooking loss, cooking yield, drip loss, pH, TBARS, color, and texture profile analyses (TPA) during storage at -18 ± 2 °C for a period of 0, 20, and 40 days. The fish soaked in sorbitol and citric acid solutions had significantly (p < 0.05) higher protein and fat contents than the control sample. Sorbitol was able to retain moisture in the product; therefore, the drip loss and cooking loss were the lowest, and cooking yield was the highest among other samples (p < 0.05). The addition of 5% (w/v) citric acid in frozen fish fillets can significantly retard the thiobarbituric acid reactive substance (TBARS) (p < 0.05) during storage when compared to fish soaked in sorbitol solution kept for the same period. However, the addition of citric acid resulted in low quality in texture and color of frozen fish fillets. The use of sorbitol was the best alternative in frozen fish fillet product due to reducing the negative effects of freezing quality of the products and generating a cryoprotective effect compared to the fillets soaked in distilled water.

7.
Polymers (Basel) ; 13(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499064

RESUMO

Bacterial cellulose from nata de coco was prepared from the fermentation of coconut juice with Acetobacter xylinum for 10 days at room temperature under sterile conditions. Carboxymethyl cellulose (CMC) was transformed from the bacterial cellulose from the nata de coco by carboxymethylation using different concentrations of sodium hydroxide (NaOH) and monochloroacetic acid (MCA) in an isopropyl (IPA) medium. The effects of various NaOH concentrations on the degree of substitution (DS), chemical structure, viscosity, color, crystallinity, morphology and the thermal properties of carboxymethyl bacterial cellulose powder from nata de coco (CMCn) were evaluated. In the carboxymethylation process, the optimal condition resulted from NaOH amount of 30 g/100 mL, as this provided the highest DS value (0.92). The crystallinity of CMCn declined after synthesis but seemed to be the same in each condition. The mechanical properties (tensile strength and percentage of elongation at break), water vapor permeability (WVP) and morphology of CMCn films obtained from CMCn synthesis using different NaOH concentrations were investigated. The tensile strength of CMCn film synthesized with a NaOH concentration of 30 g/100 mL increased, however it declined when the amount of NaOH concentration was too high. This result correlated with the DS value. The highest percent elongation at break was obtained from CMCn films synthesized with 50 g/100 mL NaOH, whereas the elongation at break decreased when NaOH concentration increased to 60 g/100 mL.

8.
Polymers (Basel) ; 13(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801132

RESUMO

Curcumin is a phenolic compound derived from turmeric roots (Curcuma longa L.). This research studied the effects of curcumin extract on the properties of chitosan films. The film characteristics measured included mechanical properties, visual aspects, color parameters, light transmission, moisture content, water solubility, water vapor permeability, infrared spectroscopy, and antioxidant activity. The results suggest that adding curcumin to chitosan-based films increases yellowness and light barriers. Infrared spectroscopy analysis showed interactions between the phenolic compounds of the extract and the chitosan, which may have improved the mechanical properties and reduced the moisture content, water solubility, and water vapor permeability of the films. The antioxidant activity of the films increased with increasing concentrations of the curcumin extract. This study shows the potential benefits of incorporating curcumin extract into chitosan films used as active packaging.

9.
Polymers (Basel) ; 13(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557255

RESUMO

Nata de coco has been used as a raw material for food preparation. In this study, the production of carboxymethyl cellulose (CMC) film from nata de coco and the effect of monochloroacetic acid on carboxymethyl bacterial cellulose (CMCn) and its film were investigated. Bacterial cellulose from nata de coco was modified into CMC form via carboxymethylation using various concentrations of monochloroacetic acid (MCA) at 6, 12, 18, and 24 g per 15 g of cellulose. The results showed that different concentrations of MCA affected the degree of substitution (DS), chemical structure, viscosity, color, crystallinity, and morphology of CMCn. The optimum treatment for carboxymethylation was found using 24 g of MCA per 15 g of cellulose, which provided the highest DS at 0.83. The morphology of CMCn was related to DS value; a higher DS value showed denser and smoother surface than nata de coco cellulose. The various MCA concentrations increased the mechanical properties (tensile strength and percentage of elongation at break) and water vapor permeability of CMCn, which were related to the DS value.

10.
Foods ; 9(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708774

RESUMO

Protein hydrolysates (PH) with a degree of hydrolysis (DH) of 5%, 10%, and 13% from two varieties of peanut were prepared using two commercial enzymes, Alcalase and Flavourzyme. The content of essential amino acids (30,290 mg/100 g) and hydrophobic amino acids (34,067 mg/100 g) of the peanut variety Kalasin 2 (KAC431) protein was higher than that of a common variety, Kalasin 1 (KAC1) (p < 0.05). The protein molecular weight distributions of the two varieties of peanut detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were similar, ranging from 15 to 75 kDa, with a major protein band at 50-75 kDa. The antioxidant and functional properties of derived PHs were influenced by DH. Although the foaming ability of protein was improved by DH5%, it was obviously decreased upon increasing DH further. The best emulsifying properties were observed in PH with DH5% (p < 0.05). The incorporation of PH with a small DH, especially when produced using Flavourzyme, had a highly positive impact on the specific volume and relative elasticity of gluten-free bread. The effect of PHs on bread quality was highly correlated with their functional properties. This study suggests that partially enzymatically modified proteins are suitable for incorporation in food products such as bread and other gluten-free products.

11.
Polymers (Basel) ; 13(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379203

RESUMO

Cellulose from Asparagus officinalis stalk end was extracted and synthesized to carboxymethyl cellulose (CMCas) using monochloroacetic acid (MCA) via carboxymethylation reaction with various sodium hydroxide (NaOH) concentrations starting from 20% to 60%. The cellulose and CMCas were characterized by the physical properties, Fourier Transform Infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, mechanical properties of CMCas films were also investigated. The optimum condition for producing CMCas was found to be 30% of NaOH concentration for the carboxymethylation reaction, which provided the highest percent yield of CMCas at 44.04% with the highest degree of substitution (DS) at 0.98. The melting point of CMCas decreased with increasing NaOH concentrations. Crystallinity of CMCas was significantly deformed (p < 0.05) after synthesis at a high concentration. The L* value of the CMCas was significantly lower at a high NaOH concentration compared to the cellulose. The highest tensile strength (44.59 MPa) was found in CMCas film synthesized with 40% of NaOH concentration and the highest percent elongation at break (24.99%) was obtained in CMCas film treated with 30% of NaOH concentration. The applications of asparagus stalk end are as biomaterials in drug delivery system, tissue engineering, coating, and food packaging.

12.
Food Sci Nutr ; 6(7): 1839-1847, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30349673

RESUMO

Biscuits were formulated using a 50/50 wheat and purple rice flour mix containing mixed spices, galangal, and defatted green-lipped mussel powder (Perna canaliculus) added in the range of 5-15% of the total biscuit weight. The fortified biscuits had higher protein (26.36%), fiber (52.90%), and ash (6.00%) contents and a lower total fat (5.64%) content compared to the control biscuits. The in vitro starch digestibility and predicted glycemic index (pGI) decreased in the fortified biscuits by 18.95% and 6.18%, respectively, while the in vitro protein digestibility increased by 3.73%, corresponding to the increased levels of defatted mussel powder present. The spread ratio and hardness of the fortified biscuits also increased significantly. The color values of the fortified biscuits after the incorporation of different levels of defatted mussel powder showed significant changes, with a darkening of the biscuit surface and a lowered browning index compared to the control biscuits. Results of the sensory quality evaluation showed that incorporation of defatted mussel powder into the biscuit mix of up to 15% showed no significant differences in liking scores in terms of color, overall appearance; whereas, the flavor and overall acceptability scores were significantly lower than the control biscuits. Overall, defatted mussel powder can be successfully incorporated into biscuit mixes to enrich the protein, fiber, and antioxidant contents of the biscuits.

13.
Foods ; 6(8)2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28757563

RESUMO

Tomatoes are one of the most nutritionally and economically important crops in New Zealand and around the world. Tomatoes require large amounts of water to grow well and are adversely affected by drought stress. However, few studies have evaluated the physicochemical characteristics of commercial tomatoes grown under water stress conditions. Four tomato cultivars (Incas, Marmande, Scoresby Dwarf, and Window Box Red) were grown in a greenhouse under well-watered and drought stress conditions and the tomatoes were harvested when ripe. The physicochemical properties and antioxidant contents of the fruits were compared. There were significant differences between cultivars in quality characteristics-such as dry matter, total soluble solids, and pH parameters-but there were no differences in the quality characteristics between the two treatments of the fruits (p > 0.05); however, there were significant differences (p < 0.05) in the antioxidant compositions (lycopene, total phenolics, and flavonoids) and antioxidant activities (DPPH and ABTS) of the fruits of both cultivars and treatments. Overall, these results indicated that tomatoes increased their bioactive compounds without changing any quality characteristics when exposed to water stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA