Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(2): 380-383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270112

RESUMO

We conducted surveillance studies in Sinaloa, Mexico, to determine the circulation of tick-borne relapsing fever spirochetes. We collected argasid ticks from a home in the village of Camayeca and isolated spirochetes. Genomic analysis indicated that Borrelia turicatae infection is a threat to those living in resource-limited settings.


Assuntos
Infecções por Borrelia , Borrelia , Febre Recorrente , Carrapatos , Animais , México/epidemiologia , Borrelia/genética , Febre Recorrente/epidemiologia , Infecções por Borrelia/epidemiologia
2.
Emerg Infect Dis ; 29(4): 723-733, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848869

RESUMO

To assess changes in SARS-CoV-2 spike binding antibody prevalence in the Dominican Republic and implications for immunologic protection against variants of concern, we prospectively enrolled 2,300 patients with undifferentiated febrile illnesses in a study during March 2021-August 2022. We tested serum samples for spike antibodies and tested nasopharyngeal samples for acute SARS-CoV-2 infection using a reverse transcription PCR nucleic acid amplification test. Geometric mean spike antibody titers increased from 6.6 (95% CI 5.1-8.7) binding antibody units (BAU)/mL during March-June 2021 to 1,332 (95% CI 1,055-1,682) BAU/mL during May-August 2022. Multivariable binomial odds ratios for acute infection were 0.55 (95% CI 0.40-0.74), 0.38 (95% CI 0.27-0.55), and 0.27 (95% CI 0.18-0.40) for the second, third, and fourth versus the first anti-spike quartile; findings were similar by viral strain. Combining serologic and virologic screening might enable monitoring of discrete population immunologic markers and their implications for emergent variant transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , República Dominicana/epidemiologia , COVID-19/epidemiologia , Anticorpos Antivirais , Febre , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
3.
Exp Appl Acarol ; 91(1): 99-110, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584844

RESUMO

Soft ticks from the Ornithodoros genus are vectors of relapsing fever (RF) spirochetes around the world. In Mexico, they were originally described in the 19th century. However, few recent surveillance studies have been conducted in Mexico, and regions where RF spirochetes circulate remain vague. Here, the presence of soft ticks in populated areas was assessed in two sites from the Mexican states of Aguascalientes and Zacatecas. Argasidae ticks were collected, identified by morphology and mitochondrial 16S rDNA gene sequencing, and tested for RF borreliae. The specimens in both sites were identified as Ornithodoros turicata but no RF spirochetes were detected. These findings emphasize the need to update the distribution of these ticks in multiple regions of Mexico and to determine the circulation of RF borreliosis in humans and domestic animals.


Assuntos
Argasidae , Borrelia , Ornithodoros , Febre Recorrente , Humanos , Animais , Febre Recorrente/epidemiologia , Borrelia/genética , Animais Domésticos
4.
BMC Genomics ; 23(1): 410, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641918

RESUMO

BACKGROUND: Tick-borne relapsing fever (TBRF) is a globally prevalent, yet under-studied vector-borne disease transmitted by soft and hard bodied ticks. While soft TBRF (sTBRF) spirochetes have been described for over a century, our understanding of the molecular mechanisms facilitating vector and host adaptation is poorly understood. This is due to the complexity of their small (~ 1.5 Mb) but fragmented genomes that typically consist of a linear chromosome and both linear and circular plasmids. A majority of sTBRF spirochete genomes' plasmid sequences are either missing or are deposited as unassembled sequences. Consequently, our goal was to generate complete, plasmid-resolved genomes for a comparative analysis of sTBRF species of the Western Hemisphere. RESULTS: Utilizing a Borrelia specific pipeline, genomes of sTBRF spirochetes from the Western Hemisphere were sequenced and assembled using a combination of short- and long-read sequencing technologies. Included in the analysis were the two recently isolated species from Central and South America, Borrelia puertoricensis n. sp. and Borrelia venezuelensis, respectively. Plasmid analyses identified diverse sequences that clustered plasmids into 30 families; however, only three families were conserved and syntenic across all species. We also compared two species, B. venezuelensis and Borrelia turicatae, which were isolated ~ 6,800 km apart and from different tick vector species but were previously reported to be genetically similar. CONCLUSIONS: To truly understand the biological differences observed between species of TBRF spirochetes, complete chromosome and plasmid sequences are needed. This comparative genomic analysis highlights high chromosomal synteny across the species yet diverse plasmid composition. This was particularly true for B. turicatae and B. venezuelensis, which had high average nucleotide identity yet extensive plasmid diversity. These findings are foundational for future endeavors to evaluate the role of plasmids in vector and host adaptation.


Assuntos
Borrelia , Febre Recorrente , Borrelia/genética , Genômica , Humanos , Plasmídeos/genética , Análise de Sequência de DNA
5.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33846120

RESUMO

Relapsing fever (RF), caused by spirochetes of the genus Borrelia, is a globally distributed, vector-borne disease with high prevalence in developing countries. To date, signaling pathways required for infection and virulence of RF Borrelia spirochetes are unknown. Cyclic di-AMP (c-di-AMP), synthesized by diadenylate cyclases (DACs), is a second messenger predominantly found in Gram-positive organisms that is linked to virulence and essential physiological processes. Although Borrelia is Gram-negative, it encodes one DAC (CdaA), and its importance remains undefined. To investigate the contribution of c-di-AMP signaling in the RF bacterium Borrelia turicatae, a cdaA mutant was generated. The mutant was significantly attenuated during murine infection, and genetic complementation reversed this phenotype. Because c-di-AMP is essential for viability in many bacteria, whole-genome sequencing was performed on cdaA mutants, and single-nucleotide polymorphisms identified potential suppressor mutations. Additionally, conditional mutation of cdaA confirmed that CdaA is important for normal growth and physiology. Interestingly, mutation of cdaA did not affect expression of homologs of virulence regulators whose levels are impacted by c-di-AMP signaling in the Lyme disease bacterium Borrelia burgdorferi Finally, the cdaA mutant had a significant growth defect when grown with salts, at decreased osmolarity, and without pyruvate. While the salt treatment phenotype was not reversed by genetic complementation, possibly due to suppressor mutations, growth defects at decreased osmolarity and in media lacking pyruvate could be attributed directly to cdaA inactivation. Overall, these results indicate CdaA is critical for B. turicatae pathogenesis and link c-di-AMP to osmoregulation and central metabolism in RF spirochetes.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia/fisiologia , Fósforo-Oxigênio Liases/metabolismo , Febre Recorrente/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia/patogenicidade , AMP Cíclico/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Camundongos , Mutação , Fósforo-Oxigênio Liases/genética , Febre Recorrente/metabolismo , Sistemas do Segundo Mensageiro , Virulência/genética
6.
J Infect Dis ; 221(5): 804-811, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31573602

RESUMO

BACKGROUND: Tick-borne relapsing fever (TBRF) is a neglected zoonotic bacterial disease known to occur on 5 continents. We report a laboratory-acquired case of TBRF caused by Borrelia caucasica, which is endemic in Ukraine and transmitted by Ornithodoros verrucosus ticks. METHODS: We isolated spirochetes and characterized them by partially sequencing the 16s ribosomal ribonucleic acid (rrs), flagellin (flaB), and deoxyribonucleic acid gyrase (gyrB) genes and conducting a phylogenetic analysis. RESULTS: These analyses revealed a close relationship of Ukrainian spirochetes with the Asian TBRF species, Borrelia persica. The taxonomic and nomenclature problems related to insufficient knowledge on the spirochetes and their vectors in the region are discussed. CONCLUSIONS: Although these findings enhance our understanding of species identities for TBRF Borrelia in Eurasia, further work is required to address the neglected status of TBRF in this part of the world. Public health practitioners should consider TBRF and include the disease into differential diagnosis of febrile illnesses with unknown etiology.


Assuntos
Borrelia/genética , Ornithodoros/microbiologia , Febre Recorrente/diagnóstico , Febre Recorrente/epidemiologia , Spirochaetales/genética , Animais , Borrelia/isolamento & purificação , DNA Girase/genética , DNA Bacteriano/genética , Flagelina/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Ornithodoros/genética , Filogenia , RNA Ribossômico 16S/genética , Febre Recorrente/microbiologia , Febre Recorrente/transmissão , Análise de Sequência de DNA , Spirochaetales/isolamento & purificação , Ucrânia/epidemiologia
7.
J Am Chem Soc ; 141(17): 6832-6836, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017399

RESUMO

Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC50 as low as 120 nM. The inhibitor exhibited significant antiviral activities in cells (EC68: 300-600 nM) and in a mouse model of Zika virus infection. X-ray studies reveal that the inhibitors bind to an allosteric, mostly hydrophobic pocket of dengue NS3 and hold the protease in an open, catalytically inactive conformation. The inhibitors and their binding structures would be useful for rational drug development targeting Zika, dengue and other Flaviviruses.


Assuntos
Antivirais/uso terapêutico , Inibidores de Proteases/uso terapêutico , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Infecção por Zika virus/tratamento farmacológico , Sítio Alostérico , Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Aminopiridinas/uso terapêutico , Animais , Antivirais/síntese química , Antivirais/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Cristalografia por Raios X , Vírus da Dengue/enzimologia , Descoberta de Drogas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Pirazinas/síntese química , Pirazinas/metabolismo , Pirazinas/uso terapêutico , Serina Endopeptidases/química , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Zika virus/enzimologia
8.
J Infect Dis ; 217(4): 538-547, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28968863

RESUMO

Background: While Zika virus (ZIKV) is mainly transmitted by mosquitoes, numerous cases of sexual transmission have been reported during recent outbreaks. Little is known about which host cell types or entry factors aid in mediating this sexual transmission. Methods: In this study, we investigated ZIKV cell tropism by infecting 2 types of human prostate cells with 3 contemporary ZIKV isolates from persons infected in the Americas. We used real-time quantitative polymerase chain reaction and immunofluorescence analyses to measure infection and flow cytometry to detect entry factor expression. Results: Here we show that ZIKV infects, replicates, and produces infectious virus in prostate stromal mesenchymal stem cells, epithelial cells, and organoids made with a combination of these cells. We also show that prostate cells express several well-characterized flavivirus attachment factors. In contrast, dengue virus does not infect or does not replicate in these prostate cells, although it is known to use similar receptors. Conclusions: Our results indicate that ZIKV favors infection of stromal cells more so than epithelial cells in organoids, possibly indicating a preference for stem cells in general. Overall, these results suggest that ZIKV replication occurs in the human prostate and can account for ZIKV secretion in semen, thus leading to sexual transmission.


Assuntos
Células Epiteliais/virologia , Células-Tronco Mesenquimais/virologia , Próstata/virologia , Tropismo Viral , Replicação Viral , Zika virus/fisiologia , América , Citometria de Fluxo , Humanos , Masculino , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Cultura de Vírus , Zika virus/isolamento & purificação , Infecção por Zika virus/virologia
9.
Sci Rep ; 14(1): 1412, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228608

RESUMO

Chagas disease is a leading cause of non-ischemic cardiomyopathy in endemic regions of Central and South America. In Belize, Triatoma dimidiata sensu lato has been identified as the predominate taxon but vectorial transmission of Chagas disease is considered to be rare in the country. We recently identified an acute case of vector-borne Chagas disease in the northern region of Belize. Here we present a subsequent investigation of triatomines collected around the case-patient's home. We identified yet undescribed species, closely related to Triatoma huehuetenanguensis vector by molecular systematics methods occurring in the peridomestic environment. The identification of a T. cruzi-positive, novel species of Triatoma in Belize indicates an increased risk of transmission to humans in the region and warrants expanded surveillance and further investigation.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Humanos , Belize , Trypanosoma cruzi/genética , Insetos Vetores
10.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945547

RESUMO

Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have a uniquely complex genome consisting of a linear chromosome and circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of Lyme disease causing Borrelia plasmids is more refined compared to RF spirochetes because of limited plasmid-resolved genomes for RF spirochetes. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all species. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia . IMPORTANCE: Borrelia spp. spirochetes are arthropod-borne bacteria found globally and infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genomes for seven Borrelia spp. found in the Western Hemisphere. This current study is a more in-depth investigation into the linear plasmids that were conserved and syntenic across species. This analysis determined differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-borne genetic elements essential for the life cycle of RF spirochetes.

11.
Microbiol Spectr ; : e0089523, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737593

RESUMO

Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have uniquely complex genomes, consisting of a linear chromosome and both circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of plasmids from Lyme disease causing spirochetes is more refined compared to RF Borrelia because of limited plasmid-resolved genome assemblies for the latter. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all the RF Borrelia species that we examined. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the putative expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia. IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally that infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled in most available genome assemblies. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genome assemblies for seven Borrelia spp. found in the Western Hemisphere. This current study is an in-depth investigation into the linear plasmids that were conserved and syntenic across species. We identified differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-localized genetic elements essential for the life cycle of RF spirochetes.

12.
PLoS Negl Trop Dis ; 17(2): e0011095, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735632

RESUMO

Mosquito saliva is a mix of numerous proteins that are injected into the skin while the mosquito searches for a blood meal. While mosquito saliva is known to be immunogenic, the salivary components driving these immune responses, as well as the types of immune responses that occur, are not well characterized. We investigated the effects of one potential immunomodulatory mosquito saliva protein, sialokinin, on the human immune response. We used flow cytometry to compare human immune cell populations between humanized mice bitten by sialokinin knockout mosquitoes or injected with sialokinin, and compared them to those bitten by wild-type mosquitoes, unbitten, or saline-injected control mice. Humanized mice received 4 mosquito bites or a single injection, were euthanized after 7 days, and skin, spleen, bone marrow, and blood were harvested for immune cell profiling. Our results show that bites from sialokinin knockout mosquitoes induced monocyte and macrophage populations in the skin, blood, bone marrow, and spleens, and primarily affected CD11c- cell populations. Other increased immune cells included plasmacytoid dendritic cells in the blood, natural killer cells in the skin and blood, and CD4+ T cells in all samples analyzed. Conversely, we observed that mice bitten with sialokinin knockout mosquitoes had decreased NKT cell populations in the skin, and fewer B cells in the blood, spleen, and bone marrow. Taken together, we demonstrated that sialokinin knockout saliva induces elements of a TH1 cellular immune response, suggesting that the sialokinin peptide is inducing a TH2 cellular immune response during wild-type mosquito biting. These findings are an important step towards understanding how mosquito saliva modulates the human immune system and which components of saliva may be critical for arboviral infection. By identifying immunomodulatory salivary proteins, such as sialokinin, we can develop vaccines against mosquito saliva components and direct efforts towards blocking arboviral infections.


Assuntos
Aedes , Saliva , Humanos , Animais , Camundongos , Baço , Pele , Imunidade , Linfócitos T CD4-Positivos , Mosquitos Vetores , Aedes/fisiologia
13.
PLoS One ; 18(2): e0281942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827340

RESUMO

Borrelia miyamotoi is a tick-transmitted spirochete that is genetically grouped with relapsing fever Borrelia and possesses multiple archived pseudogenes that encode variable major proteins (Vmps). Vmps are divided into two groups based on molecular size; variable large proteins (Vlps) and variable small proteins (Vsps). Relapsing fever Borrelia undergo Vmp gene conversion at a single expression locus to generate new serotypes by antigenic switching which is the basis for immune evasion that causes relapsing fever in patients. This study focused on B. miyamotoi vmp expression when spirochetes were subjected to antibody killing selection pressure. We incubated a low passage parent strain with mouse anti-B. miyamotoi polyclonal antiserum which killed the majority population, however, antibody-resistant reisolates were recovered. PCR analysis of the gene expression locus in the reisolates showed vsp1 was replaced by Vlp-encoded genes. Gel electrophoresis protein profiles and immunoblots of the reisolates revealed additional Vlps indicating that new serotype populations were selected by antibody pressure. Sequencing of amplicons from the expression locus of the reisolates confirmed the presence of a predominant majority serotype population with minority variants. These findings confirm previous work demonstrating gene conversion in B. miyamotoi and that multiple serotype populations expressing different vmps arise when subjected to antibody selection. The findings also provide evidence for spontaneous serotype variation emerging from culture growth in the absence of antibody pressure. Validation and determination of the type, number, and frequency of serotype variants that arise during animal infections await further investigations.


Assuntos
Borrelia , Ixodes , Febre Recorrente , Carrapatos , Animais , Camundongos , Borrelia/genética , Anticorpos/genética , Variação Antigênica
14.
J Med Entomol ; 60(5): 968-977, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37455018

RESUMO

Soft ticks (Argasidae) of the Pavlovskyella Pospelova-Shtrom subgenus are important vectors of relapsing fever spirochetes, which are agents of disease globally. South American representatives of the Pavlovskyella subgenus include 3 species: Ornithodoros (Pavlovskyella) brasiliensis Aragão, Ornithodoros (Pavlovskyella) furcosus Neumann, and Ornithodoros (Pavlovskyella) rostratus Aragão. Here, we describe a fourth species based on morphological and mitogenomic evidence of ticks collected in burrows of unknown hosts in central Chile. The larva of the new species separates from other South American soft ticks by the following combination of characters: 13 pairs of dorsolateral setae, dorsal plate hexagonal, hypostome blunt with denticles from apex almost to the base. Adults of this new species lack cheeks, possess a dorsoventral groove, and have humps, similar to O. (P.) brasiliensis; however, they lack bulging structures on the flanks of idiosoma. Moreover, females and males differ from O. (P.) rostratus by having 3 humps instead of spurs in tarsi I and from O. (P.) furcosus because of their smaller size and thinner anterior lip of the genital aperture in females. The phylogenetic analysis performed with mitogenomes of the Argasidae family depicts the new Pavlovskyella species from Chile in a monophyletic clade with other South American species in the subgenus, confirming a regional group.


Assuntos
Ácaros e Carrapatos , Argasidae , Ornithodoros , Feminino , Masculino , Animais , Argasidae/genética , Chile , Filogenia , Ornithodoros/genética
15.
Ticks Tick Borne Dis ; 14(4): 102167, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965260

RESUMO

Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure.


Assuntos
Argasidae , Borrelia , Ixodidae , Febre Recorrente , Picadas de Carrapatos , Animais , Camundongos , Humanos , Estados Unidos , Febre Recorrente/diagnóstico
17.
Microbiol Spectr ; 10(3): e0172221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35579456

RESUMO

Tick-borne relapsing fever (TBRF) is a neglected vector-borne bacterial disease distributed worldwide. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three argasid-borne TBRF species previously implicated in human disease in North America. TBRF is likely underdiagnosed due to its nonspecific symptoms and poorly developed diagnostic tests. Studies suggest that the Borrelia immunogenic protein A (BipA) is specific to TBRF Borrelia but heterogenic between species. In this study, we hypothesized that antibody responses generated to BipA are specific to the North American TBRF species infecting a given animal. To test this, we characterized the expression and localization of native BipA in North American species of TBRF Borrelia. We also infected mice by needle inoculation or tick bite with B. turicatae, B. hermsii, or B. parkeri and evaluated serum sample reactivity to recombinant BipA (rBipA) that was produced from each species. Furthermore, serum samples from nonhuman primates and domestic dogs experimentally infected with B. turicatae were assessed. Lastly, we tested human Lyme disease (LD) serum samples to determine potential cross-reactivity to rBipA generated from B. turicatae, B. parkeri, and B. hermsii. Our findings indicate that rBipA has the potential to distinguish between infections of LD- and TBRF-causing spirochetes and that antibody responses were more robust toward the Borrelia species causing infection. This work further supports that rBipA can likely distinguish between B. turicatae, B. hermsii, and B. parkeri infections in mice, canines, and nonhuman primates. IMPORTANCEBorrelia species transmitted by soft or hard ticks cause tick-borne relapsing fever (TBRF). This is a debilitating disease distributed worldwide but is likely underdiagnosed or misdiagnosed as Lyme disease due to poorly developed diagnostic tests. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three TBRF species previously implicated in human disease in North America. Commonly used diagnostic methods do not identify the species causing infection. In this study, we evaluated the potential of recombinant Borrelia immunogenic protein A (rBipA) as a diagnostic antigen capable of distinguishing between infections of TBRF Borrelia species. We show that serum from mice, canines, and nonhuman primates infected with B. turicatae, B. parkeri, or B. hermsii react more strongly to the rBipA from the species causing infection. Furthermore, sera from Lyme disease patients failed to cross-react with our rBipA proteins, indicating the potential to use rBipA as a species-specific diagnostic antigen for TBRF.


Assuntos
Borrelia , Doença de Lyme , Febre Recorrente , Animais , Formação de Anticorpos , Cães , Doença de Lyme/diagnóstico , Camundongos , América do Norte , Febre Recorrente/diagnóstico , Febre Recorrente/microbiologia , Febre Recorrente/veterinária , Proteína Estafilocócica A
18.
Ticks Tick Borne Dis ; 13(1): 101843, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656944

RESUMO

The genome of Borrelia spp. consists of an approximate 1 megabase chromosome and multiple linear and circular plasmids. We previously described a multiplex PCR assay to detect plasmids in the North American Borrelia miyamotoi strains LB-2001 and CT13-2396. The primer pair sets specific for each plasmid were derived from the genome sequence for B. miyamotoi strain CT13-2396, because the LB-2001 complete sequence had not been generated. The recent completion of the LB-2001 genome sequence revealed a distinct number of plasmids (n = 12) that differed from CT13-2396 (n = 14). Notable was a 97-kilobase plasmid in LB-2001, not present in CT13-2396, that appeared to be a rearrangement of the circular plasmids of strain CT13-2396. Strain LB-2001 contained two plasmids, cp30-2 and cp24, that were not annotated for strain CT13-2396. Therefore, we re-evaluated the original CT13-2396-derived multiplex PCR primer pairs and determined their location in the LB-2001 plasmids. We modified the original multiplex plasmid PCR assay for strain LB-2001 to include cp30-2 and cp24. We also determined which LB-2001 plasmids corresponded to the amplicons generated from the original CT13-2396 primer sets. These observations provide a more precise plasmid profile based on the multiplex PCR assay and reflect the complexity of gene rearrangements that occur in B. miyamotoi strains isolated from the same geographic region.


Assuntos
Borrelia , Ixodes , Animais , Borrelia/genética , Rearranjo Gênico , Genômica , Ixodes/genética , Reação em Cadeia da Polimerase Multiplex , Plasmídeos/genética
19.
Sci Rep ; 12(1): 19310, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369253

RESUMO

The mitochondrial genome (mitogenome) has proven to be important for the taxonomy, systematics, and population genetics of ticks. However, current methods to generate mitogenomes can be cost-prohibitive at scale. To address this issue, we developed a cost-effective approach to amplify and sequence the whole mitogenome of individual tick specimens. Using two different primer sites, this approach generated two full-length mitogenome amplicons that were sequenced using the Oxford Nanopore Technologies' Mk1B sequencer. We used this approach to generate 85 individual tick mitogenomes from samples comprised of the three tick families, 11 genera, and 57 species. Twenty-six of these species did not have a complete mitogenome available on GenBank prior to this work. We benchmarked the accuracy of this approach using a subset of samples that had been previously sequenced by low-coverage Illumina genome skimming. We found our assemblies were comparable or exceeded the Illumina method, achieving a median sequence concordance of 99.98%. We further analyzed our mitogenome dataset in a mitophylogenomic analysis in the context of all three tick families. We were able to sequence 72 samples in one run and achieved a cost/sample of ~ $10 USD. This cost-effective strategy is applicable for sample identification, taxonomy, systematics, and population genetics for not only ticks but likely other metazoans; thus, making mitogenome sequencing equitable for the wider scientific community.


Assuntos
Genoma Mitocondrial , Carrapatos , Humanos , Animais , Genoma Mitocondrial/genética , Filogenia , Carrapatos/genética , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
20.
PLoS Negl Trop Dis ; 15(6): e0009427, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106915

RESUMO

Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.


Assuntos
Aedes/virologia , Febre de Chikungunya/patologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/isolamento & purificação , Mordeduras e Picadas de Insetos , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Imunoglobulina M/sangue , Camundongos , Mosquitos Vetores , Agulhas , RNA Viral/sangue , Testes Sorológicos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA