Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 16(8): e1008707, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780778

RESUMO

Proteus mirabilis, a Gram-negative uropathogen, is a major causative agent in catheter-associated urinary tract infections (CAUTI). Mannose-resistant Proteus-like fimbriae (MR/P) are crucially important for P. mirabilis infectivity and are required for biofilm formation and auto-aggregation, as well as for bladder and kidney colonization. Here, the X-ray crystal structure of the MR/P tip adhesin, MrpH, is reported. The structure has a fold not previously described and contains a transition metal center with Zn2+ coordinated by three conserved histidine residues and a ligand. Using biofilm assays, chelation, metal complementation, and site-directed mutagenesis of the three histidines, we show that an intact metal binding site occupied by zinc is essential for MR/P fimbria-mediated biofilm formation, and furthermore, that P. mirabilis biofilm formation is reversible in a zinc-dependent manner. Zinc is also required for MR/P-dependent agglutination of erythrocytes, and mutation of the metal binding site renders P. mirabilis unfit in a mouse model of UTI. The studies presented here provide important clues as to the mechanism of MR/P-mediated biofilm formation and serve as a starting point for identifying the physiological MR/P fimbrial receptor.


Assuntos
Adesinas Bacterianas/metabolismo , Biofilmes , Proteínas de Fímbrias/metabolismo , Proteus mirabilis/metabolismo , Infecções Urinárias/microbiologia , Zinco/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Humanos , Infecções por Proteus/metabolismo , Infecções por Proteus/microbiologia , Proteus mirabilis/química , Proteus mirabilis/genética , Alinhamento de Sequência , Infecções Urinárias/metabolismo , Zinco/química
2.
Proc Natl Acad Sci U S A ; 115(21): 5558-5563, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735695

RESUMO

Acinetobacter baumannii-a leading cause of nosocomial infections-has a remarkable capacity to persist in hospital environments and medical devices due to its ability to form biofilms. Biofilm formation is mediated by Csu pili, assembled via the "archaic" chaperone-usher pathway. The X-ray structure of the CsuC-CsuE chaperone-adhesin preassembly complex reveals the basis for bacterial attachment to abiotic surfaces. CsuE exposes three hydrophobic finger-like loops at the tip of the pilus. Decreasing the hydrophobicity of these abolishes bacterial attachment, suggesting that archaic pili use tip-fingers to detect and bind to hydrophobic cavities in substrates. Antitip antibody completely blocks biofilm formation, presenting a means to prevent the spread of the pathogen. The use of hydrophilic materials instead of hydrophobic plastics in medical devices may represent another simple and cheap solution to reduce pathogen spread. Phylogenetic analysis suggests that the tip-fingers binding mechanism is shared by all archaic pili carrying two-domain adhesins. The use of flexible fingers instead of classical receptor-binding cavities is presumably more advantageous for attachment to structurally variable substrates, such as abiotic surfaces.


Assuntos
Acinetobacter baumannii/química , Adesinas Bacterianas/química , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/química , Chaperonas Moleculares/química , Acinetobacter baumannii/metabolismo , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Fímbrias Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Filogenia , Homologia de Sequência
3.
Beilstein J Org Chem ; 14: 1890-1900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112094

RESUMO

Photoaffinity labeling is frequently employed for the investigation of ligand-receptor interactions in solution. We have employed an interdisciplinary methodology to achieve facile photolabeling of the lectin FimH, which is a bacterial protein, crucial for adhesion, colonization and infection. Following our earlier work, we have here designed and synthesized diazirine-functionalized mannosides as high-affinity FimH ligands and performed an extensive study on photo-crosslinking of the best ligand (mannoside 3) with a series of model peptides and FimH. Notably, we have employed high-performance mass spectrometry to be able to detect radiation results with the highest possible accuracy. We are concluding from this study that photolabeling of FimH with sugar diazirines has only very limited success and cannot be regarded a facile approach for covalent modification of FimH.

4.
Nature ; 465(7295): 236-8, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20463740

RESUMO

Nature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider's spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 A resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider's silk extrusion duct.


Assuntos
Seda/química , Seda/metabolismo , Aranhas/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Sequência Conservada , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Seda/ultraestrutura , Eletricidade Estática
5.
Proc Natl Acad Sci U S A ; 109(7): 2325-9, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308375

RESUMO

BRICHOS domains are encoded in > 30 human genes, which are associated with cancer, neurodegeneration, and interstitial lung disease (ILD). The BRICHOS domain from lung surfactant protein C proprotein (proSP-C) is required for membrane insertion of SP-C and has anti-amyloid activity in vitro. Here, we report the 2.1 Å crystal structure of the human proSP-C BRICHOS domain, which, together with molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry, reveals how BRICHOS domains may mediate chaperone activity. Observation of amyloid deposits composed of mature SP-C in lung tissue samples from ILD patients with mutations in the BRICHOS domain or in its peptide-binding linker region supports the in vivo relevance of the proposed mechanism. The results indicate that ILD mutations interfering with proSP-C BRICHOS activity cause amyloid disease secondary to intramolecular chaperone malfunction.


Assuntos
Amiloide/antagonistas & inibidores , Pulmão/metabolismo , Chaperonas Moleculares/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/química , Dados de Sequência Molecular , Conformação Proteica , Proteína C Associada a Surfactante Pulmonar/química
6.
Protein Sci ; 33(7): e5063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864729

RESUMO

Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.


Assuntos
Chaperonas Moleculares , Domínios Proteicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Sítios de Ligação , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
7.
Biochemistry ; 52(43): 7523-31, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24099305

RESUMO

Amyloid diseases are defined by tissue deposition of insoluble, fibrillar ß-sheet polymers of specific proteins, but it appears that toxic oligomeric species rather than the fibrils are the main cause of tissue degeneration. Many proteins can form amyloid-like fibrils in vitro, but only ~30 proteins have been found to cause mammalian amyloid disease, suggesting that physiological mechanisms that protect against amyloid formation exist. The transmembrane region of lung surfactant protein C precursor (proSP-C) forms amyloid-like fibrils in vitro, and SP-C amyloid has been found in lung tissue from patients with interstitial lung disease (ILD). ProSP-C contains a BRICHOS domain, in which many ILD-associated mutations are localized, and the BRICHOS domain can prevent SP-C from forming amyloid-like fibrils. Recent data suggest that recombinant BRICHOS domains from proSP-C and Bri2 (associated with familial dementia and amyloid formation) interact with peptides with a strong propensity to form ß-sheet structures, including amyloid ß-peptide associated with Alzheimer's disease. Such interactions efficiently delay formation of fibrils and oligomers. The BRICHOS domain is defined at the sequence level and is found in ~10 distantly related proprotein families. These have widely different or unknown functions, but several of the proteins are associated with human disease. Structural modeling of various BRICHOS domains, based on the X-ray structure of the proSP-C BRICHOS domain, identifies a conserved region that is structurally complementary to the ß-sheet- and/or amyloid-prone regions in the BRICHOS domain-containing proproteins. These observations make the BRICHOS domain the first example of a chaperone-like domain with specificity for ß-prone regions.


Assuntos
Amiloide/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Proteína C Associada a Surfactante Pulmonar/química , Proteínas Adaptadoras de Transdução de Sinal , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Animais , Sequência Conservada , Demência/tratamento farmacológico , Demência/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/uso terapêutico , Nootrópicos/química , Nootrópicos/metabolismo , Nootrópicos/uso terapêutico , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/uso terapêutico , Domínios e Motivos de Interação entre Proteínas , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Homologia de Sequência de Aminoácidos
8.
J Biol Chem ; 287(37): 31608-17, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22801430

RESUMO

Amyloid diseases such as Alzheimer, Parkinson, and prion diseases are associated with a specific form of protein misfolding and aggregation into oligomers and fibrils rich in ß-sheet structure. The BRICHOS domain consisting of ∼100 residues is found in membrane proteins associated with degenerative and proliferative disease, including lung fibrosis (surfactant protein C precursor; pro-SP-C) and familial dementia (Bri2). We find that recombinant BRICHOS domains from Bri2 and pro-SP-C prevent fibril formation of amyloid ß-peptides (Aß(40) and Aß(42)) far below the stoichiometric ratio. Kinetic experiments show that a main effect of BRICHOS is to prolong the lag time in a concentration-dependent, quantitative, and reproducible manner. An ongoing aggregation process is retarded if BRICHOS is added at any time during the lag phase, but it is too late to interfere at the end of the process. Results from circular dichroism and NMR spectroscopy, as well as analytical size exclusion chromatography, imply that Aß is maintained as an unstructured monomer during the extended lag phase in the presence of BRICHOS. Electron microscopy shows that although the process is delayed, typical amyloid fibrils are eventually formed also when BRICHOS is present. Structural BRICHOS models display a conserved array of tyrosine rings on a five-stranded ß-sheet, with inter-hydroxyl distances suited for hydrogen-bonding peptides in an extended ß-conformation. Our data imply that the inhibitory mechanism is reliant on BRICHOS interfering with molecular events during the lag phase.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Dicroísmo Circular , Humanos , Doenças Neurodegenerativas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Fibrose Pulmonar/metabolismo
9.
Mol Microbiol ; 86(5): 1100-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23046340

RESUMO

Coli surface antigen 6 (CS6) is a widely expressed enterotoxigenic Escherichia coli (ETEC) colonization factor that mediates bacterial attachment to the small intestinal epithelium. CS6 is a polymer of two protein subunits CssA and CssB, which are secreted and assembled on the cell surface via the CssC/CssD chaperone usher (CU) pathway. Here, we present an atomic resolution model for the structure of CS6 based on the results of X-ray crystallographic, spectroscopic and biochemical studies, and suggest a mechanism for CS6-mediated adhesion. We show that the CssA and CssB subunits are assembled alternately in linear fibres by the principle of donor strand complementation. This type of fibre assembly is novel for CU assembled adhesins. We also show that both subunits in the fibre bind to receptors on epithelial cells, and that CssB, but not CssA, specifically recognizes the extracellular matrix protein fibronectin. Taken together, structural and functional results suggest that CS6 is an adhesive organelle of a novel type, a hetero-polyadhesin that is capable of polyvalent attachment to different receptors.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Adesinas Bacterianas/metabolismo , Células CACO-2 , Cristalografia por Raios X , Escherichia coli Enterotoxigênica/química , Escherichia coli Enterotoxigênica/metabolismo , Fibronectinas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
10.
Trends Immunol ; 30(8): 401-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19643669

RESUMO

When mast cells are activated they can respond by releasing their secretory granule compounds, including mast cell-specific proteases of chymase, tryptase and carboxypeptidase A (MC-CPA) type. MC-CPA is a dominant protein component of the mast cell granule and the MC-CPA gene is extremely highly expressed. Despite this, relatively little has been known of its biological function. However, the recent generation of mouse strains lacking MC-CPA has opened up new possibilities for investigations related to this protease. This recent development has revealed a role for MC-CPA in regulating innate immunity responses, including the degradation of harmful substances such as the vasoconstrictive factor endothelin 1 and snake venom toxins. Here, we summarize the current knowledge of MC-CPA.


Assuntos
Carboxipeptidases A , Imunidade Inata/fisiologia , Mastócitos/enzimologia , Vesículas Secretórias/metabolismo , Animais , Carboxipeptidases A/química , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Carboxipeptidases A/fisiologia , Humanos , Camundongos , Ratos , Especificidade por Substrato
11.
Biochem J ; 418(3): 541-51, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19032149

RESUMO

The chaperone/usher pathway controls assembly of fibres of adhesive organelles of Gram-negative bacteria. The final steps of fibre assembly and fibre translocation to the cell surface are co-ordinated by the outer membrane proteins, ushers. Ushers consist of several soluble periplasmic domains and a single transmembrane beta-barrel. Here we report isolation and structural/functional characterization of a novel middle domain of the Caf1A usher from Yersinia pestis. The isolated UMD (usher middle domain) is a highly soluble monomeric protein capable of autonomous folding. A 2.8 A (1 A=0.1 nm) resolution crystal structure of UMD revealed that this domain has an immunoglobulin-like fold similar to that of donor-strand-complemented Caf1 fibre subunit. Moreover, these proteins displayed significant structural similarity. Although UMD is in the middle of the predicted amphipathic beta-barrel of Caf1A, the usher still assembled in the membrane in the absence of this domain. UMD did not bind Caf1M-Caf1 complexes, but its presence was shown to be essential for Caf1 fibre secretion. The study suggests that UMD may play the role of a subunit-substituting protein (dummy subunit), plugging or priming secretion through the channel in the Caf1A usher. Comparison of isolated UMD with the recent structure of the corresponding domain of PapC usher revealed high similarity of the core structures, suggesting a universal structural adaptation of FGL (F(1)G(1) long) and FGS (F(1)G(1) short) chaperone/usher pathways for the secretion of different types of fibres. The functional role of two topologically different states of this plug domain suggested by structural and biochemical results is discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Yersinia pestis/fisiologia
12.
Beilstein J Org Chem ; 6: 810-22, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20978617

RESUMO

Mannose-specific adhesion of Escherichia coli bacteria to cell surfaces, the cause of various infections, is mediated by a fimbrial lectin, called FimH. X-ray studies have revealed a carbohydrate recognition domain (CRD) on FimH that can complex α-D-mannosides. However, as the precise nature of the ligand-receptor interactions in mannose-specific adhesion is not yet fully understood, it is of interest to identify carbohydrate recognition domains on the fimbrial lectin also in solution. Photoaffinity labeling serves as an appropriate methodology in this endeavour and hence biotin-labeled photoactive mannosides were designed and synthesized for photoaffinity labeling of FimH. So far, the photo-crosslinking properties of the new photoactive mannosides could be detailed with the peptide angiotensin II and labeling of FimH was shown both by MS/MS studies and by affino dot-blot analysis.

13.
Top Curr Chem ; 288: 67-107, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22328027

RESUMO

Bacterial infections constitute a major global health problem, acutely accentuated by the rapid spread of antibiotic resistant bacterial strains. The widespread need for bacteria to attach - adhere - to target cells before they can initiate an infection may be used to advantage by targeting the bacterial adhesion tools such as pili and fimbriae for development of novel anti-bacterial vaccines and drugs. Type 1 fimbriae are widely expressed by Escherichia coli. and are used by uropathogenic strains to mediate attachment to specific niches in the urinary tract. These fimbriae belong to a class of fibrillar adhesion organelles assembled through the chaperone/usher pathway, one of the terminal branches of the general secretion pathway in Gram-negative bacteria. Our understanding of the assembly, structure and function of these structures has evolved significantly over the last decade. Here, we summarize current understanding of the function and biogenesis of fibrillar adhesion organelles, and provide some examples of recent progress towards interfering with bacterial adhesion as a means to prevent infection.

14.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 618-627, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282471

RESUMO

Spider silk is a biomaterial with exceptional mechanical toughness, and there is great interest in developing biomimetic methods to produce engineered spider silk-based materials. However, the mechanisms that regulate the conversion of spider silk proteins (spidroins) from highly soluble dope into silk are not completely understood. The N-terminal domain (NT) of Euprosthenops australis dragline silk protein undergoes conformational and quaternary-structure changes from a monomer at a pH above 7 to a homodimer at lower pH values. Conversion from the monomer to the dimer requires the protonation of three conserved glutamic acid residues, resulting in a low-pH `locked' dimer stabilized by symmetric electrostatic interactions at the poles of the dimer. The detailed molecular events during this transition are still unresolved. Here, a 2.1 Šresolution crystal structure of an NT T61A mutant in an alternative, asymmetric, dimer form in which the electrostatic interactions at one of the poles are dramatically different from those in symmetrical dimers is presented. A similar asymmetric dimer structure from dragline silk of Nephila clavipes has previously been described. It is suggested that asymmetric dimers represent a conserved intermediate state in spider silk formation, and a revised `lock-and-trigger' mechanism for spider silk formation is presented.


Assuntos
Aracnídeos/metabolismo , Fibroínas/química , Proteínas Recombinantes/química , Animais , Cristalização/métodos , Escherichia coli/genética , Fibroínas/genética , Modelos Moleculares , Estrutura Molecular , Mutação , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Eletricidade Estática
15.
Acta Crystallogr D Struct Biol ; 74(Pt 11): 1053-1062, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387764

RESUMO

The important uropathogen Proteus mirabilis encodes a record number of chaperone/usher-pathway adhesive fimbriae. Such fimbriae, which are used for adhesion to cell surfaces/tissues and for biofilm formation, are typically important virulence factors in bacterial pathogenesis. Here, the structures of the receptor-binding domains of the tip-located two-domain adhesins UcaD (1.5 Šresolution) and AtfE (1.58 Šresolution) from two P. mirabilis fimbriae (UCA/NAF and ATF) are presented. The structures of UcaD and AtfE are both similar to the F17G type of tip-located fimbrial receptor-binding domains, and the structures are very similar despite having only limited sequence similarity. These structures represent an important step towards a molecular-level understanding of P. mirabilis fimbrial adhesins and their roles in the complex pathogenesis of urinary-tract infections.


Assuntos
Adesinas Bacterianas/química , Conformação Proteica , Proteus mirabilis/metabolismo , Adesinas Bacterianas/classificação , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Proteus mirabilis/crescimento & desenvolvimento , Homologia de Sequência
16.
Adv Exp Med Biol ; 603: 74-87, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966405

RESUMO

Most Gram negative pathogens express surface located fibrillar organelles that are used for adhesion to host epithelia and/or for protection. The assembly of many such organelles is managed by a highly conserved periplasmic chaperone/usher assembly pathway. During the last few years, considerable progress has been made in understanding how periplasmic chaperones mediate folding, targeting, and assembly of F1 antigen subunits into the F1 capsular antigen. In particular, structures representing snapshots of several of the steps involved in assembly have allowed us to begin to draw a detailed molecular-level picture of F1 assembly specifically, and of chaperone/usher-mediated assembly in general. Here, a brief summary of these new results will be presented.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Yersinia pestis/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/imunologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Subunidades Proteicas , Termodinâmica , Yersinia pestis/metabolismo , Yersinia pestis/ultraestrutura
17.
Biochem J ; 389(Pt 3): 685-94, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15799718

RESUMO

Periplasmic chaperone/usher machineries are used for assembly of filamentous adhesion organelles of Gram-negative pathogens in a process that has been suggested to be driven by folding energy. Structures of mutant chaperone-subunit complexes revealed a final folding transition (condensation of the subunit hydrophobic core) on the release of organelle subunit from the chaperone-subunit pre-assembly complex and incorporation into the final fibre structure. However, in view of the large interface between chaperone and subunit in the pre-assembly complex and the reported stability of this complex, it is difficult to understand how final folding could release sufficient energy to drive assembly. In the present paper, we show the X-ray structure for a native chaperone-fibre complex that, together with thermodynamic data, shows that the final folding step is indeed an essential component of the assembly process. We show that completion of the hydrophobic core and incorporation into the fibre results in an exceptionally stable module, whereas the chaperone-subunit pre-assembly complex is greatly destabilized by the high-energy conformation of the bound subunit. This difference in stabilities creates a free energy potential that drives fibre formation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Modelos Moleculares , Organelas/química , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas , Termodinâmica
18.
Nat Commun ; 5: 3254, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24510122

RESUMO

The mechanisms controlling the conversion of spider silk proteins into insoluble fibres, which happens in a fraction of a second and in a defined region of the silk glands, are still unresolved. The N-terminal domain changes conformation and forms a homodimer when pH is lowered from 7 to 6; however, the molecular details still remain to be determined. Here we investigate site-directed mutants of the N-terminal domain from Euprosthenops australis major ampullate spidroin 1 and find that the charged residues D40, R60 and K65 mediate intersubunit electrostatic interactions. Protonation of E79 and E119 is required for structural conversions of the subunits into a dimer conformation, and subsequent protonation of E84 around pH 5.7 leads to the formation of a fully stable dimer. These residues are highly conserved, indicating that the now proposed three-step mechanism prevents premature aggregation of spidroins and enables fast formation of spider silk fibres in general.


Assuntos
Fibroínas/metabolismo , Seda/biossíntese , Aranhas/metabolismo , Animais , Dimerização , Fibroínas/química , Fibroínas/genética , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Seda/química , Espectrometria de Fluorescência , Aranhas/genética , Eletricidade Estática
19.
J Mol Biol ; 417(4): 294-308, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22321795

RESUMO

The chaperone/usher pathway assembles surface virulence organelles of Gram-negative bacteria, consisting of fibers of linearly polymerized protein subunits. Fiber subunits are connected through 'donor strand complementation': each subunit completes the immunoglobulin (Ig)-like fold of the neighboring subunit by donating the seventh ß-strand in trans. Whereas the folding of Ig domains is a fast first-order process, folding of Ig modules into the fiber conformation is a slow second-order process. Periplasmic chaperones separate this process in two parts by forming transient complexes with subunits. Interactions between chaperones and subunits are also based on the principle of donor strand complementation. In this study, we have performed mutagenesis of the binding motifs of the Caf1M chaperone and Caf1 capsular subunit from Yersinia pestis and analyzed the effect of the mutations on the structure, stability, and kinetics of Caf1M-Caf1 and Caf1-Caf1 interactions. The results suggest that a large hydrophobic effect combined with extensive main-chain hydrogen bonding enables Caf1M to rapidly bind an early folding intermediate of Caf1 and direct its partial folding. The switch from the Caf1M-Caf1 contact to the less hydrophobic, but considerably tighter and less dynamic Caf1-Caf1 contact occurs via the zip-out-zip-in donor strand exchange pathway with pocket 5 acting as the initiation site. Based on these findings, Caf1M was engineered to bind Caf1 faster, tighter, or both faster and tighter. To our knowledge, this is the first successful attempt to rationally design an assembly chaperone with improved chaperone function.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Yersinia pestis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estabilidade Proteica , Estrutura Quaternária de Proteína
20.
J Mol Biol ; 422(4): 477-87, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22706024

RESUMO

Formation of spider silk from its constituent proteins-spidroins-involves changes from soluble helical/coil conformations to insoluble ß-sheet aggregates. This conversion needs to be regulated to avoid precocious aggregation proximally in the silk gland while still allowing rapid silk assembly in the distal parts. Lowering of pH from about 7 to 6 is apparently important for silk formation. The spidroin N-terminal domain (NT) undergoes stable dimerization and structural changes in this pH region, but the underlying mechanisms are incompletely understood. Here, we determine the NMR and crystal structures of Euprosthenops australis NT mutated in the dimer interface (A72R). Also, the NMR structure of wild-type (wt) E. australis NT at pH7.2 and 300 mM sodium chloride was determined. The wt NT and A72R structures are monomers and virtually identical, but they differ from the subunit structure of dimeric wt NT mainly by having a tryptophan (W10) buried between helix 1 and helix 3, while W10 is surface exposed in the dimer. Wedging of the W10 side chain in monomeric NT tilts helix 3 approximately 5-6Å into a position that is incompatible with that of the observed dimer structure. The structural differences between monomeric and dimeric NT domains explain the tryptophan fluorescence patterns of NT at pH7 and pH6 and indicate that the biological function of NT depends on conversion between the two conformations.


Assuntos
Seda/química , Seda/metabolismo , Triptofano/química , Triptofano/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X/métodos , Fibroínas/química , Fibroínas/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Aranhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA