Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gastroenterology ; 154(3): 624-636, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29031500

RESUMO

BACKGROUND & AIMS: The enteric nervous system (ENS) regulates gastrointestinal function via different subtypes of neurons, organized into fine-tuned neural circuits. It is not clear how cell diversity is created within the embryonic ENS; information required for development of cell-based therapies and models of enteric neuropathies. We aimed to identify proteins that regulate ENS differentiation and network formation. METHODS: We generated and compared RNA expression profiles of the entire ENS, ENS progenitor cells, and non-ENS gut cells of mice, collected at embryonic days 11.5 and 15.5, when different subtypes of neurons are formed. Gastrointestinal tissues from R26ReYFP reporter mice crossed to Sox10-CreERT2 or Wnt1-Cre mice were dissected and the 6 populations of cells were isolated by flow cytometry. We used histochemistry to map differentially expressed proteins in mouse and human gut tissues at different stages of development, in different regions. We examined enteric neuronal diversity and gastric function in Wnt1-Cre x Sox6fl/fl mice, which do not express the Sox6 gene in the ENS. RESULTS: We identified 147 transcription and signaling factors that varied in spatial and temporal expression during development of the mouse ENS. Of the factors also analyzed in human ENS, most were conserved. We uncovered 16 signaling pathways (such as fibroblast growth factor and Eph/ephrin pathways). Transcription factors were grouped according to their specific expression in enteric progenitor cells (such as MEF2C), enteric neurons (such as SOX4), or neuron subpopulations (such as SATB1 and SOX6). Lack of SOX6 in the ENS reduced the numbers of gastric dopamine neurons and delayed gastric emptying. CONCLUSIONS: Using transcriptome and histochemical analyses of the developing mouse and human ENS, we mapped expression patterns of transcription and signaling factors. Further studies of these candidate determinants might elucidate the mechanisms by which enteric stem cells differentiate into neuronal subtypes and form distinct connectivity patterns during ENS development. We found expression of SOX6 to be required for development of gastric dopamine neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Sistema Nervoso Entérico/metabolismo , Transdução de Sinais , Estômago/inervação , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Comunicação Autócrina , Sistema Nervoso Entérico/embriologia , Esvaziamento Gástrico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Humanos , Camundongos Knockout , Comunicação Parácrina , Fenótipo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética
2.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1359-1369, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28460880

RESUMO

Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis.


Assuntos
Transdiferenciação Celular , Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Neurosci ; 36(15): 4339-50, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076429

RESUMO

The enteric nervous system (ENS) is organized into neural circuits within the gastrointestinal wall where it controls the peristaltic movements, secretion, and blood flow. Although proper gut function relies on the complex neuronal composition of the ENS, little is known about the transcriptional networks that regulate the diversification into different classes of enteric neurons and glia during development. Here we redefine the role of Ascl1 (Mash1), one of the few regulatory transcription factors described during ENS development. We show that enteric glia and all enteric neuronal subtypes appear to be derived from Ascl1-expressing progenitor cells. In the gut of Ascl1(-/-) mutant mice, neurogenesis is delayed and reduced, and posterior gliogenesis impaired. The ratio of neurons expressing Calbindin, TH, and VIP is selectively decreased while, for instance, 5-HT(+) neurons, which previously were believed to be Ascl1-dependent, are formed in normal numbers. Essentially the same differentiation defects are observed in Ascl1(KINgn2) transgenic mutants, where the proneural activity of Ngn2 replaces Ascl1, demonstrating that Ascl1 is required for the acquisition of specific enteric neuronal subtype features independent of its role in neurogenesis. In this study, we provide novel insights into the expression and function of Ascl1 in the differentiation process of specific neuronal subtypes during ENS development. SIGNIFICANCE STATEMENT: The molecular mechanisms underlying the generation of different neuronal subtypes during development of the enteric nervous system are poorly understood despite its pivotal function in gut motility and involvement in gastrointestinal pathology. This report identifies novel roles for the transcription factor Ascl1 in enteric gliogenesis and neurogenesis. Moreover, independent of its proneurogenic activity, Ascl1 is required for the normal expression of specific enteric neuronal subtype characteristics. Distinct enteric neuronal subtypes are formed in a temporally defined order, and we observe that the early-born 5-HT(+) neurons are generated in Ascl1(-/-) mutants, despite the delayed neurogenesis. Enteric nervous system progenitor cells may therefore possess strong intrinsic control over their specification at the initial waves of neurogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Neurônios/fisiologia , Animais , Calbindinas/metabolismo , Diferenciação Celular/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação/genética , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurogênese/fisiologia , Neuroglia/fisiologia , Gravidez , Neurônios Serotoninérgicos/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
4.
Nat Neurosci ; 24(1): 34-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288908

RESUMO

Autonomous regulation of the intestine requires the combined activity of functionally distinct neurons of the enteric nervous system (ENS). However, the variety of enteric neuron types and how they emerge during development remain largely unknown. Here, we define a molecular taxonomy of 12 enteric neuron classes within the myenteric plexus of the mouse small intestine using single-cell RNA sequencing. We present cell-cell communication features and histochemical markers for motor neurons, sensory neurons and interneurons, together with transgenic tools for class-specific targeting. Transcriptome analysis of the embryonic ENS uncovers a novel principle of neuronal diversification, where two neuron classes arise through a binary neurogenic branching and all other identities emerge through subsequent postmitotic differentiation. We identify generic and class-specific transcriptional regulators and functionally connect Pbx3 to a postmitotic fate transition. Our results offer a conceptual and molecular resource for dissecting ENS circuits and predicting key regulators for directed differentiation of distinct enteric neuron classes.


Assuntos
Plexo Mientérico/química , Neurônios/química , RNA/química , RNA/genética , Análise de Célula Única , Animais , Comunicação Celular , Sistema Nervoso Entérico/fisiologia , Proteínas de Homeodomínio/genética , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Plexo Mientérico/citologia , Neurônios/classificação , Neurônios/ultraestrutura , Proteínas Proto-Oncogênicas/genética , Células Receptoras Sensoriais/fisiologia , Análise de Sequência de RNA , Transcriptoma
5.
Oncotarget ; 7(27): 42314-42329, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27275539

RESUMO

The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches.


Assuntos
Transdiferenciação Celular , Células Epiteliais/citologia , Epitélio Corneano/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Linhagem da Célula , Fibroblastos/citologia , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA