Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(3): 666-683.e17, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32991841

RESUMO

A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.


Assuntos
Tecido Adiposo/microbiologia , Translocação Bacteriana , Microbioma Gastrointestinal , Mesentério/microbiologia , Tecido Adiposo/patologia , Animais , Biodiversidade , Biomarcadores/metabolismo , Polaridade Celular , Células Cultivadas , Colite Ulcerativa/patologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica , Vida Livre de Germes , Humanos , Íleo/microbiologia , Íleo/patologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Metagenoma , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Ribossômico 16S/genética , Células-Tronco/metabolismo
2.
Cell ; 148(1-2): 99-111, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265405

RESUMO

The replication of eukaryotic chromosomes is organized temporally and spatially within the nucleus through epigenetic regulation of replication origin function. The characteristic initiation timing of specific origins is thought to reflect their chromatin environment or sub-nuclear positioning, however the mechanism remains obscure. Here we show that the yeast Forkhead transcription factors, Fkh1 and Fkh2, are global determinants of replication origin timing. Forkhead regulation of origin timing is independent of local levels or changes of transcription. Instead, we show that Fkh1 and Fkh2 are required for the clustering of early origins and their association with the key initiation factor Cdc45 in G1 phase, suggesting that Fkh1 and Fkh2 selectively recruit origins to emergent replication factories. Fkh1 and Fkh2 bind Fkh-activated origins, and interact physically with ORC, providing a plausible mechanism to cluster origins. These findings add a new dimension to our understanding of the epigenetic basis for differential origin regulation and its connection to chromosomal domain organization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcrição Gênica
3.
Mol Cell ; 67(2): 348-354.e4, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28732207

RESUMO

We have combined a machine-learning approach with other strategies to optimize knockout efficiency with the CRISPR/Cas9 system. In addition, we have developed a multiplexed sgRNA expression strategy that promotes the functional ablation of single genes and allows for combinatorial targeting. These strategies have been combined to design and construct a genome-wide, sequence-verified, arrayed CRISPR library. This resource allows single-target or combinatorial genetic screens to be carried out at scale in a multiplexed or arrayed format. By conducting parallel loss-of-function screens, we compare our approach to existing sgRNA design and expression strategies.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Endonucleases/genética , Inativação Gênica , Marcação de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Algoritmos , Proteínas Associadas a CRISPR/metabolismo , Endonucleases/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Aprendizado de Máquina , RNA Guia de Cinetoplastídeos/metabolismo , Transfecção
4.
Nature ; 554(7692): 378-381, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414946

RESUMO

Using a functional model of breast cancer heterogeneity, we previously showed that clonal sub-populations proficient at generating circulating tumour cells were not all equally capable of forming metastases at secondary sites. A combination of differential expression and focused in vitro and in vivo RNA interference screens revealed candidate drivers of metastasis that discriminated metastatic clones. Among these, asparagine synthetase expression in a patient's primary tumour was most strongly correlated with later metastatic relapse. Here we show that asparagine bioavailability strongly influences metastatic potential. Limiting asparagine by knockdown of asparagine synthetase, treatment with l-asparaginase, or dietary asparagine restriction reduces metastasis without affecting growth of the primary tumour, whereas increased dietary asparagine or enforced asparagine synthetase expression promotes metastatic progression. Altering asparagine availability in vitro strongly influences invasive potential, which is correlated with an effect on proteins that promote the epithelial-to-mesenchymal transition. This provides at least one potential mechanism for how the bioavailability of a single amino acid could regulate metastatic progression.


Assuntos
Asparagina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metástase Neoplásica/patologia , Animais , Asparaginase/metabolismo , Asparaginase/uso terapêutico , Asparagina/deficiência , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Disponibilidade Biológica , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Invasividade Neoplásica/patologia , Prognóstico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518220

RESUMO

Bladder cancer (BC) has a 70% telomerase reverse transcriptase (TERT or hTERT in humans) promoter mutation prevalence, commonly at -124 base pairs, and this is associated with increased hTERT expression and poor patient prognosis. We inserted a green fluorescent protein (GFP) tag in the mutant hTERT promoter allele to create BC cells expressing an hTERT-GFP fusion protein. These cells were used in a fluorescence-activated cell sorting-based pooled CRISPR-Cas9 Kinome knockout genetic screen to identify tripartite motif containing 28 (TRIM28) and TRIM24 as regulators of hTERT expression. TRIM28 activates, while TRIM24 suppresses, hTERT transcription from the mutated promoter allele. TRIM28 is recruited to the mutant promoter where it interacts with TRIM24, which inhibits its activity. Phosphorylation of TRIM28 through the mTOR complex 1 (mTORC1) releases it from TRIM24 and induces hTERT transcription. TRIM28 expression promotes in vitro and in vivo BC cell growth and stratifies BC patient outcome. mTORC1 inhibition with rapamycin analog Ridaforolimus suppresses TRIM28 phosphorylation, hTERT expression, and cell viability. This study may lead to hTERT-directed cancer therapies with reduced effects on normal progenitor cells.


Assuntos
Mutação/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Proteína 28 com Motivo Tripartido/genética , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células-Tronco/patologia
7.
Genes Dev ; 29(13): 1403-15, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26115953

RESUMO

PIWI proteins and their associated piRNAs protect germ cells from the activity of mobile genetic elements. Two classes of piRNAs­primary and secondary­are defined by their mechanisms of biogenesis. Primary piRNAs are processed directly from transcripts of piRNA cluster loci, whereas secondary piRNAs are generated in an adaptive amplification loop, termed the ping-pong cycle. In mammals, piRNA populations are dynamic, shifting as male germ cells develop. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward transposons. In meiotic cells, the piRNA population is transposon-poor and largely restricted to primary piRNAs derived from pachytene piRNA clusters. The transition from the embryonic to the adult piRNA pathway is not well understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production of secondary piRNAs. In the absence of RNF17, ping-pong occurs inappropriately in meiotic cells. Ping-pong initiates piRNA responses against not only transposons but also protein-coding genes and long noncoding RNAs, including genes essential for germ cell development. Thus, the sterility of Rnf17 mutants may be a manifestation of a small RNA-based autoimmune reaction.


Assuntos
Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Testículo/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Proteínas Argonautas/genética , Elementos de DNA Transponíveis/genética , Técnicas de Inativação de Genes , Masculino , Meiose/genética , Camundongos , Mutação , RNA Interferente Pequeno/metabolismo , Testículo/metabolismo , Fatores de Transcrição/genética
8.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203254

RESUMO

Accurate staging of bladder cancer assists in identifying optimal treatment (e.g., transurethral resection vs. radical cystectomy vs. bladder preservation). However, currently, about one-third of patients are over-staged and one-third are under-staged. There is a pressing need for a more accurate staging modality to evaluate patients with bladder cancer to assist clinical decision-making. We hypothesize that MRI/RNA-seq-based radiogenomics and artificial intelligence can more accurately stage bladder cancer. A total of 40 magnetic resonance imaging (MRI) and matched formalin-fixed paraffin-embedded (FFPE) tissues were available for analysis. Twenty-eight (28) MRI and their matched FFPE tissues were available for training analysis, and 12 matched MRI and FFPE tissues were used for validation. FFPE samples were subjected to bulk RNA-seq, followed by bioinformatics analysis. In the radiomics, several hundred image-based features from bladder tumors in MRI were extracted and analyzed. Overall, the model obtained mean sensitivity, specificity, and accuracy of 94%, 88%, and 92%, respectively, in differentiating intra- vs. extra-bladder cancer. The proposed model demonstrated improvement in the three matrices by 17%, 33%, and 25% and 17%, 16%, and 17% as compared to the genetic- and radiomic-based models alone, respectively. The radiogenomics of bladder cancer provides insight into discriminative features capable of more accurately staging bladder cancer. Additional studies are underway.


Assuntos
Inteligência Artificial , Neoplasias da Bexiga Urinária , Humanos , RNA-Seq , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/genética , Imageamento por Ressonância Magnética , Músculos
9.
Mol Cell ; 56(6): 796-807, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25435137

RESUMO

The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.


Assuntos
RNA Interferente Pequeno/genética , Software , Algoritmos , Sequência de Bases , Linhagem Celular Tumoral , Simulação por Computador , Sequência Consenso , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Modelos Genéticos , Dados de Sequência Molecular
10.
Nature ; 520(7547): 358-62, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25855289

RESUMO

Cancer metastasis requires that primary tumour cells evolve the capacity to intravasate into the lymphatic system or vasculature, and extravasate into and colonize secondary sites. Others have demonstrated that individual cells within complex populations show heterogeneity in their capacity to form secondary lesions. Here we develop a polyclonal mouse model of breast tumour heterogeneity, and show that distinct clones within a mixed population display specialization, for example, dominating the primary tumour, contributing to metastatic populations, or showing tropism for entering the lymphatic or vasculature systems. We correlate these stable properties to distinct gene expression profiles. Those clones that efficiently enter the vasculature express two secreted proteins, Serpine2 and Slpi, which were necessary and sufficient to program these cells for vascular mimicry. Our data indicate that these proteins not only drive the formation of extravascular networks but also ensure their perfusion by acting as anticoagulants. We propose that vascular mimicry drives the ability of some breast tumour cells to contribute to distant metastases while simultaneously satisfying a critical need of the primary tumour to be fed by the vasculature. Enforced expression of SERPINE2 and SLPI in human breast cancer cell lines also programmed them for vascular mimicry, and SERPINE2 and SLPI were overexpressed preferentially in human patients that had lung-metastatic relapse. Thus, these two secreted proteins, and the phenotype they promote, may be broadly relevant as drivers of metastatic progression in human cancer.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Endotélio Vascular/patologia , Metástase Neoplásica/patologia , Animais , Anticoagulantes/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Progressão da Doença , Endotélio Vascular/metabolismo , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica/genética , Recidiva , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Análise de Sequência de DNA , Serpina E2/metabolismo
12.
Nature ; 491(7423): 279-83, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23064227

RESUMO

PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism to provide essential protection for germ-cell genomes against the activity of mobile genetic elements. piRNA populations comprise a molecular definition of transposons, which permits them to distinguish transposons from host genes and selectively silence them. piRNAs can be generated in two distinct ways, forming either primary or secondary piRNAs. Primary piRNAs come from discrete genomic loci, termed piRNA clusters, and seem to be derived from long, single-stranded precursors. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are probably formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner. Secondary piRNAs arise during the adaptive 'ping-pong' cycle, with their 5' termini being formed by the activity of PIWIs themselves. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Drosophila melanogaster Zucchini, is a member of the phospholipase-D family of phosphodiesterases, which includes both phospholipases and nucleases. Here we produced a dimeric, soluble fragment of the mouse Zucchini homologue (mZuc; also known as PLD6) and show that it possesses single-strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to phospholipase-D family nucleases than to phospholipases. Together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Fosfolipase D/química , Fosfolipase D/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Eletricidade Estática , Especificidade por Substrato
13.
Genes Dev ; 23(9): 1077-90, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19417103

RESUMO

In higher eukaryotes, heritable gene silencing is associated with histone deacetylation and late replication timing. In Saccharomyces cerevisiae, the histone deacetylase Rpd3 regulates gene expression and also modulates replication timing; however, these mechanisms have been suggested to be independent, and no global association has been found between replication timing and gene expression levels. Using 5-Bromo-2'-deoxyuridine (BrdU) incorporation to generate genome-wide replication profiles, we identified >100 late-firing replication origins that are regulated by Rpd3L, which is specifically targeted to promoters to silence transcription. Rpd3S, which recompacts chromatin after transcription, plays a primary role at only a handful of origins, but subtly influences initiation timing globally. The ability of these functionally distinct Rpd3 complexes to affect replication initiation timing supports the idea that histone deacetylation directly influences initiation timing. Accordingly, loss of Rpd3 function results in higher levels of histone H3 and H4 acetylation surrounding Rpd3-regulated origins, and these origins show a significant association with Rpd3 chromatin binding and gene regulation, supporting a general link between histone acetylation, replication timing, and control of gene expression in budding yeast. Our results also reveal a novel and complementary genomic map of Rpd3L- and Rpd3S-regulated chromosomal loci.


Assuntos
Replicação do DNA/genética , Genoma Fúngico/genética , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Hidroxiureia/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Regiões Promotoras Genéticas , Origem de Replicação/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Tempo
14.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38558977

RESUMO

Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using multiple transcriptional profiling methods, we interrogated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury (SCI). We show that LRAs acquire a spectrum of molecularly distinct, neuroanatomically restricted reactivity states that evolve after SCI. We identify transcriptionally unique reactive LRAs in degenerating white matter that direct the specification and function of local microglia that clear lipid-rich myelin debris to promote tissue repair. Fueling this LRA functional adaptation is Ccn1 , which encodes for a secreted matricellular protein. Loss of astrocyte CCN1 leads to excessive, aberrant activation of local microglia with (i) abnormal molecular specification, (ii) dysfunctional myelin debris processing, and (iii) impaired lipid metabolism, culminating in blunted debris clearance and attenuated neurological recovery from SCI. Ccn1 -expressing white matter astrocytes are specifically induced by local myelin damage and generated in diverse demyelinating disorders in mouse and human, pointing to their fundamental, evolutionarily conserved role in white matter repair. Our findings show that LRAs assume regionally divergent reactivity states with functional adaptations that are induced by local context-specific triggers and influence disorder outcome. Astrocytes tile the central nervous system (CNS) where they serve vital roles that uphold healthy nervous system function, including regulation of synapse development, buffering of neurotransmitters and ions, and provision of metabolic substrates 1 . In response to diverse CNS insults, astrocytes exhibit disorder-context specific transformations that are collectively referred to as reactivity 2-5 . The characteristics of regionally and molecularly distinct reactivity states are incompletely understood. The mechanisms through which distinct reactivity states arise, how they evolve or resolve over time, and their consequences for local cell function and CNS disorder progression remain enigmatic. Immediately adjacent to CNS lesions, border-forming astrocytes (BFAs) undergo transcriptional reprogramming and proliferation to form a neuroprotective barrier that restricts inflammation and supports axon regeneration 6-9 . Beyond the lesion, spared but dynamic regions of the injured CNS exhibit varying degrees of synaptic circuit remodeling and progressive cellular responses to secondary damage that have profound consequences for neural repair and recovery 10,11 . Throughout these cytoarchitecturally intact, but injury-reactive regions, lesion-remote astrocytes (LRAs) intermingle with neurons and glia, undergo little to no proliferation, and exhibit varying degrees of cellular hypertrophy 7,12,13 . The molecular and functional properties of LRAs remain grossly undefined. Therapeutically harnessing spared regions of the injured CNS will require a clearer understanding of the accompanying cellular and molecular landscape. Here, we leveraged integrative transcriptional profiling methodologies to identify multiple spatiotemporally resolved, molecularly distinct states of LRA reactivity within the injured spinal cord. Computational modeling of LRA-mediated heterotypic cell interactions, astrocyte-specific conditional gene deletion, and multiple mouse models of acute and chronic CNS white matter degeneration were used to interrogate a newly identified white matter degeneration-reactive astrocyte subtype. We define how this reactivity state is induced and its role in governing the molecular and functional specification of local microglia that clear myelin debris from the degenerating white matter to promote repair.

15.
Cancer Cell ; 42(1): 70-84.e8, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194915

RESUMO

Strategies are needed to better identify patients that will benefit from immunotherapy alone or who may require additional therapies like chemotherapy or radiotherapy to overcome resistance. Here we employ single-cell transcriptomics and spatial proteomics to profile triple negative breast cancer biopsies taken at baseline, after one cycle of pembrolizumab, and after a second cycle of pembrolizumab given with radiotherapy. Non-responders lack immune infiltrate before and after therapy and exhibit minimal therapy-induced immune changes. Responding tumors form two groups that are distinguishable by a classifier prior to therapy, with one showing high major histocompatibility complex expression, evidence of tertiary lymphoid structures, and displaying anti-tumor immunity before treatment. The other responder group resembles non-responders at baseline and mounts a maximal immune response, characterized by cytotoxic T cell and antigen presenting myeloid cell interactions, only after combination therapy, which is mirrored in a murine model of triple negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Anticorpos Monoclonais Humanizados/uso terapêutico , Terapia Combinada , Imunoterapia
16.
BMC Genomics ; 14: 659, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24074028

RESUMO

BACKGROUND: Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (Fru(M)). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. RESULTS: By over-expressing individual Fru(M) isoforms in fru-expressing neurons in either males or females and assaying the global transcriptional response by RNA-sequencing, we show that three Fru(M) isoforms have different regulatory activities that depend on the sex of the fly. We identified several sets of genes regulated downstream of Fru(M) isoforms, including many annotated with neuronal functions. By determining the binding sites of individual Fru(M) isoforms using SELEX we demonstrate that the distinct zinc finger domain of each Fru(M) isoforms confers different DNA binding specificities. A genome-wide search for these binding site sequences finds that the gene sets identified as induced by over-expression of Fru(M) isoforms in males are enriched for genes that contain the binding sites. An analysis of the chromosomal distribution of genes downstream of Fru(M) shows that those that are induced and repressed in males are highly enriched and depleted on the X chromosome, respectively. CONCLUSIONS: This study elucidates the different regulatory and DNA binding activities of three Fru(M) isoforms on a genome-wide scale and identifies genes regulated by these isoforms. These results add to our understanding of sex chromosome biology and further support the hypothesis that in some cell-types genes with male-biased expression are enriched on the X chromosome.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco , Animais , Sequência de Bases , Sítios de Ligação , Cromossomos de Insetos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Masculino , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Caracteres Sexuais , Fatores de Transcrição/genética
17.
iScience ; 26(9): 107703, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37701814

RESUMO

Bladder cancer (BLCA) is more common in men but more aggressive in women. Sex-based differences in cancer biology are commonly studied using a murine model with BLCA generated by N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). While tumors in the BBN model have been profiled, these profiles provide limited information on the tumor microenvironment. Here, we applied single-cell RNA sequencing to characterize cell-type specific transcriptional differences between male and female BBN-induced tumors. We found proportional and gene expression differences in epithelial and non-epithelial subpopulations between male and female tumors. Expression of several genes predicted sex-specific survival in several human BLCA datasets. We identified novel and clinically relevant sex-specific transcriptional signatures including immune cells in the tumor microenvironment and it validated the relevance of the BBN model for studying sex differences in human BLCA. This work highlights the importance of considering sex as a biological variable in the development of new and accurate cancer markers.

18.
Cell Genom ; 3(3): 100272, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950379

RESUMO

Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.

19.
Oncoimmunology ; 12(1): 2222560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363104

RESUMO

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoterapia
20.
Nat Cancer ; 3(1): 25-42, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121993

RESUMO

Although dormancy is thought to play a key role in the metastasis of breast tumor cells to the brain, our knowledge of the molecular mechanisms regulating disseminated tumor cell (DTC) dormancy in this organ is limited. Here using serial intravital imaging of dormant and metastatic triple-negative breast cancer lines, we identify escape from the single-cell or micrometastatic state as the rate-limiting step towards brain metastasis. We show that every DTC occupies a vascular niche, with quiescent DTCs residing on astrocyte endfeet. At these sites, astrocyte-deposited laminin-211 drives DTC quiescence by inducing the dystroglycan receptor to associate with yes-associated protein, thereby sequestering it from the nucleus and preventing its prometastatic functions. These findings identify a brain-specific mechanism of DTC dormancy and highlight the need for a more thorough understanding of tumor dormancy to develop therapeutic approaches that prevent brain metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Astrócitos/metabolismo , Encéfalo/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Laminina/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA