Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Sci ; 133(5)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31722976

RESUMO

Neutrophils are primary phagocytes of the innate immune system that generate reactive oxygen species (ROS) and mediate host defense. Deficient phagocyte NADPH oxidase (PHOX) function leads to chronic granulomatous disease (CGD) that is characterized by invasive infections, including those by the generally non-pathogenic fungus Aspergillus nidulans The role of neutrophil ROS in this specific host-pathogen interaction remains unclear. Here, we exploit the optical transparency of zebrafish to image the effects of neutrophil ROS on invasive fungal growth and neutrophil behavior in response to Aspergillus nidulans In a wild-type host, A. nidulans germinates rapidly and elicits a robust inflammatory response with efficient fungal clearance. PHOX-deficient larvae have increased susceptibility to invasive A. nidulans infection despite robust neutrophil infiltration. Expression of subunit p22phox (officially known as CYBA), specifically in neutrophils, does not affect fungal germination but instead limits the area of fungal growth and excessive neutrophil inflammation and is sufficient to restore host survival in p22phox-deficient larvae. These findings suggest that neutrophil ROS limits invasive fungal growth and has immunomodulatory activities that contribute to the specific susceptibility of PHOX-deficient hosts to invasive A. nidulans infection.


Assuntos
Aspergilose/imunologia , Aspergillus nidulans/crescimento & desenvolvimento , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Animais , Aspergillus nidulans/patogenicidade , Doença Granulomatosa Crônica/enzimologia , Inflamação/enzimologia , Modelos Animais , NADPH Oxidases/deficiência , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
2.
PLoS Pathog ; 14(8): e1007229, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071103

RESUMO

In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence.


Assuntos
Aspergillus fumigatus/imunologia , Aspergillus fumigatus/fisiologia , Citotoxicidade Imunológica , Macrófagos/fisiologia , Neutrófilos/fisiologia , Esporos Fúngicos/imunologia , Animais , Animais Geneticamente Modificados , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Larva , Organismos Geneticamente Modificados , Fagocitose/imunologia , Esporos Fúngicos/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia
3.
Fungal Genet Biol ; 117: 1-10, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753128

RESUMO

LaeA is a conserved global regulator of secondary metabolism and development in filamentous fungi. Examination of Aspergillus fumigatus transcriptome data of laeA deletion mutants have been fruitful in identifying genes and molecules contributing to the laeA mutant phenotype. One of the genes significantly down regulated in A. fumigatus ΔlaeA is metR, encoding a bZIP DNA binding protein required for sulfur and methionine metabolism in fungi. LaeA and MetR deletion mutants exhibit several similarities including down regulation of sulfur assimilation and methionine metabolism genes and ability to grow on the toxic sulfur analog, sodium selenate. However, unlike ΔmetR, ΔlaeA strains are able to grow on sulfur, sulfite, and cysteine. To examine if any parameter of the ΔlaeA phenotype is due to decreased metR expression, an over-expression allele (OE::metR) was placed in a ΔlaeA background. The OE::metR allele could not significantly restore expression of MetR regulated genes in ΔlaeA but did restore sensitivity to sodium selenate. In A. nidulans a second bZIP protein, MetZ, also regulates sulfur and methionine metabolism genes. However, addition of an OE::metZ construct to the A. fumigatus ΔlaeA OE::metR strain still was unable to rescue the ΔlaeA phenotype to wildtype with regards gliotoxin synthesis and virulence in a zebrafish aspergillosis model.


Assuntos
Aspergilose/genética , Aspergillus fumigatus/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Alelos , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/patogenicidade , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação Fúngica da Expressão Gênica , Gliotoxina/biossíntese , Gliotoxina/metabolismo , Metionina/genética , Metionina/metabolismo , Metabolismo Secundário/genética , Ácido Selênico , Deleção de Sequência , Fatores de Transcrição/genética , Transcriptoma/genética , Peixe-Zebra
4.
Fungal Genet Biol ; 105: 52-54, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28559109

RESUMO

Invasive aspergillosis (IA) is a disease of the immunocompromised host and generally caused by the opportunistic fungal pathogen Aspergillus fumigatus. While both host and fungal factors contribute to disease severity and outcome, there are fundamental features of IA development including fungal morphological transition from infectious conidia to tissue-penetrating hyphae as well as host defenses rooted in mechanisms of innate phagocyte function. Here we address recent advances in the field and use real-time in vivo imaging in the larval zebrafish to visually highlight conserved vertebrate innate immune behaviors including macrophage phagocytosis of conidia and neutrophil responses post-germination.


Assuntos
Aspergillus fumigatus/imunologia , Hifas/imunologia , Macrófagos/imunologia , Fagocitose , Esporos Fúngicos/imunologia , Animais , Peixe-Zebra
5.
Eukaryot Cell ; 13(10): 1266-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24879123

RESUMO

Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Fagócitos/imunologia , Peixe-Zebra/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Humanos , Hifas/imunologia , Hifas/patogenicidade , Larva/imunologia , Larva/microbiologia , Macrófagos/imunologia , Fagocitose , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Peixe-Zebra/microbiologia
6.
Eukaryot Cell ; 12(11): 1499-508, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24036343

RESUMO

Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Pigmentação/genética , Policetídeo Sintases/metabolismo , Estresse Fisiológico , Trichoderma/enzimologia , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Pigmentos Biológicos/biossíntese , Policetídeo Sintases/genética , Esporos Fúngicos/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
7.
J Fungi (Basel) ; 4(4)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551557

RESUMO

The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.

8.
mBio ; 8(5)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874473

RESUMO

The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin's carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique.IMPORTANCE In a postgenomic world, reverse genetic approaches have displaced their forward genetic counterparts. The techniques used in forward genetics to identify loci of interest were typically very cumbersome and time-consuming, relying on Mendelian traits in model organisms. The current work was pursued not only to identify alleles involved in regulation of secondary metabolism but also to demonstrate a return to forward genetics to track phenotypes and to discover genetic pathways that could not be predicted through a reverse genetics approach. While identification of mutant alleles from whole-genome sequencing has been done before, here we illustrate the possibility of coupling this strategy with a genetic screen to identify multiple alleles of interest. Sequencing of classically derived mutants revealed several uncharacterized genes, which represent novel pathways to regulate and control the biosynthesis of sterigmatocystin and of aflatoxin, a societally and medically important mycotoxin.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário/genética , Cosmídeos/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Teste de Complementação Genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Esterigmatocistina/metabolismo
9.
Cell Rep ; 19(5): 1008-1021, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467895

RESUMO

The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.


Assuntos
Aspergillus/metabolismo , Cobre/metabolismo , Interações Hospedeiro-Patógeno , Espécies Reativas de Oxigênio/metabolismo , Animais , Aspergillus/genética , Aspergillus/patogenicidade , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , ATPases do Tipo-P/genética , ATPases do Tipo-P/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
10.
mSphere ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830189

RESUMO

One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspergillus fumigatus collected from the ISS and a comparison to the experimentally established clinical isolates Af293 and CEA10. Whole-genome sequencing of ISSFT-021 and IF1SW-F4 showed 54,960 and 52,129 single nucleotide polymorphisms, respectively, compared to Af293, which is consistent with observed genetic heterogeneity among sequenced A. fumigatus isolates from diverse clinical and environmental sources. Assessment of in vitro growth characteristics, secondary metabolite production, and susceptibility to chemical stresses revealed no outstanding differences between ISS and clinical strains that would suggest special adaptation to life aboard the ISS. Virulence assessment in a neutrophil-deficient larval zebrafish model of invasive aspergillosis revealed that both ISSFT-021 and IF1SW-F4 were significantly more lethal than Af293 and CEA10. Taken together, these genomic, in vitro, and in vivo analyses of two A. fumigatus strains isolated from the ISS provide a benchmark for future investigations of these strains and for continuing research on specific microbial isolates from manned space environments. IMPORTANCE As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions.

11.
Int J Food Microbiol ; 179: 10-7, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699234

RESUMO

Ochratoxin A (OTA) is a potent mycotoxin produced by Aspergillus and Penicillium species and is a common contaminant of a wide variety of food commodities, with Aspergillus carbonarius being the main producer of OTA contamination in grapes and wine. The molecular structure of OTA comprises a dihydroisocoumarin ring linked to phenylalanine and, as shown in different producing fungal species, a polyketide synthase (PKS) is a component of the OTA biosynthetic pathway. Similar to observations in other filamentous ascomycetes, the genome sequence of A. carbonarius contains a large number of genes predicted to encode PKSs. In this work a pks gene identified within the putative OTA cluster of A. carbonarius, designated as AcOTApks, was inactivated and the resulting mutant strain was unable to produce OTA, confirming the role of AcOTApks in this biosynthetic pathway. AcOTApks protein is characteristic of the highly reduced (HR)-PKS family, and also contains a putative methyltransferase domain likely responsible for the addition of the methyl group to the OTA polyketide structure. AcOTApks is different from the ACpks protein that we previously described in A. carbonarius, which showed an expression profile compatible with OTA production. We performed phylogenetic analyses of the ß-ketosynthase and acyl-transferase domains of the OTA PKSs that had been identified and characterized in different OTA producing fungal species. The phylogenetic results were similar for both domains analyzed and showed that OTA PKS of A. carbonarius, Aspergillus niger and Aspergillus ochraceus clustered in a monophyletic group with 100% bootstrap support suggesting a common origin, while the other OTA PKSs analyzed were phylogenetically distant. A quantitative RT-PCR assay monitored AcOTApks expression during fungal growth and concomitant production of OTA by A. carbonarius in synthetic grape medium. A clear correlation between the expression profile of AcOTApks and kinetics of OTA production was observed, with AcOTApks reaching its maximum level of transcription before OTA accumulation in mycelium reached its highest level, confirming the fact that gene transcription always precedes phenotypic production.


Assuntos
Aspergillus/enzimologia , Aspergillus/genética , Ocratoxinas/biossíntese , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Aspergillus/classificação , Sequência de Bases , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Filogenia , Estrutura Terciária de Proteína , Transcriptoma , Vitis/microbiologia
12.
Org Lett ; 15(14): 3562-5, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23841722

RESUMO

Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillus terreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP-related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP affecting melanin synthesis was also identified in this species.


Assuntos
Aspergillus/química , Biossíntese de Peptídeos Independentes de Ácido Nucleico/genética , Peptídeo Sintases/química , Aspergillus/genética , Aspergillus/metabolismo , Vias Biossintéticas/genética , Marcação de Genes , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
13.
Org Lett ; 14(22): 5684-7, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23116177

RESUMO

Meroterpenoids are natural products produced from polyketide and terpenoid precursors. A gene targeting system for A. terreus NIH2624 was developed, and a gene cluster for terretonin biosynthesis was characterized. The intermediates and shunt products were isolated from the mutant strains, and a pathway for terretonin biosynthesis is proposed. Analysis of two meroterpenoid pathways corresponding to terretonin in A. terreus and austinol in A. nidulans reveals that they are closely related evolutionarily.


Assuntos
Aspergillus nidulans/metabolismo , Terpenos/química , Aspergillus nidulans/química , Aspergillus nidulans/genética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA