Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 60(22): 6671-6681, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612916

RESUMO

Reflective coatings are an essential feature of X-ray telescopes. Their overall performance relies heavily on substrate compatibility and how well they conform to the optics assembly processes. We use X-ray reflectometry (XRR) to demonstrate the compatibility of shaping flat substrates coated with iridium, and show that specular and nonspecular reflectance before and after shaping is on par with traditional hot-slumped coated substrates. From 1.487 and 8.048keV measurements, we find that the substrates have rms roughness of 0.38nm and magnetron sputtered iridium deposits with rms surface roughness of 0.27-0.35nm. A hydrocarbon overlayer from atmospheric contamination is present with a thickness of 1.4-1.6nm and a density of 1.2-1.6g/cm3. Both the traditional hot slumped and the flat substrates undergoing post-coating shaping have a similar characteristic surface morphology and are equally well-suited for use with X-ray optics. Finally, we demonstrate by simulation the improved effective area achieved by using a low-Z overlayer, and illustrate the performance of a hybrid optic coated with optimized bilayers for a Primakoff axion spectrum emitted by the sun.

2.
Sci Rep ; 14(1): 9360, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653793

RESUMO

In the course of the Horizon 2020 project HighNESS, a second moderator concept has been developed for the European Spallation Source, which complements the currently built moderator and is optimized for high intensity with a large viewable surface area. In this work we introduce conceptual designs for neutron instruments for condensed matter research designed to make optimal use of the capabilities of this moderator. The focus is on two concepts for small-angle neutron scattering and one neutron imaging instrument, which are intended to complement corresponding instruments that are already under construction at the European Spallation Source. One small-angle neutron scattering instrument concept resembles a conventional pinhole collimator geometry and aims to profit from the proposed second moderator by enabling to illuminate larger samples and providing particularly high resolution, drawing on a 30 m collimation and corresponding detector distance. A second small-angle neutron scattering instrument concept adopts nested mirror optics that enable to efficiently exploit the large moderator size and provide high resolution by focusing on the detector. The neutron imaging instrument concept is a typical pinhole instrument that can be found at continuous sources and draws on the corresponding strengths of high flux and large homogeneous fields-of-view, while still providing moderate wavelength resolution for advanced imaging methods.

3.
J Appl Crystallogr ; 54(Pt 1): 195-202, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833647

RESUMO

For the further development of spin-echo techniques to label elastic scattering it is necessary to perform simulations of the Larmor precession of neutron spins in a magnetic field. The details of some of these techniques as implemented at the reactor in Delft are simulated. First, the workings of the magnetized foil flipper are simulated. A full virtual spin-echo small-angle neutron scattering instrument is built and tested without and with a realistic scattering sample. It is essential for these simulations to have a simulated sample that also describes the transmitted beam of unscattered neutrons, which usually is not implemented for the simulation of conventional small-angle neutron scattering (SANS) instruments. Finally, the workings of a spin-echo modulated small-angle neutron scattering (SEMSANS) instrument are simulated. The simulations are in good agreement with theory and experiments. This setup can be extended to include realistic magnetic field distributions to fully predict the features of future Larmor labelling elastic-scattering instruments. Configurations can now be simulated for more complicated combinations of SANS with SEMSANS.

4.
Sci Rep ; 7(1): 9561, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842660

RESUMO

The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA