Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114163, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678556

RESUMO

Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation. By investigating the correlation between elevated O-GlcNAcylation and increased RBM14 expression in lung cancer cells, we discovered that RBM14 promotes ubiquitin-dependent proteasomal degradation of OGA, ultimately mediating cellular O-GlcNAcylation levels. In addition, RBM14 itself is O-GlcNAcylated at serine 521, regulating its interaction with the E3 ligase TRIM33, consequently affecting OGA protein stability. Moreover, we demonstrated that mutation of serine 521 to alanine abrogated the oncogenic properties of RBM14. Collectively, our findings reveal a previously unknown mechanism for the regulation of OGA and suggest a potential therapeutic target for the treatment of cancers with dysregulated O-GlcNAcylation.


Assuntos
Estabilidade Proteica , Proteínas de Ligação a RNA , Humanos , Acetilglucosamina/metabolismo , Antígenos de Neoplasias , beta-N-Acetil-Hexosaminidases/metabolismo , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Histona Acetiltransferases , Hialuronoglucosaminidase , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , N-Acetilglucosaminiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
iScience ; 26(10): 107883, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37752945

RESUMO

The colonic mucosal barrier protects against infection, inflammation, and tissue ulceration. Composed primarily of Mucin-2, proteolytic erosion of this barrier is an invariant feature of colitis; however, the molecular mechanisms are not well understood. We have applied a recurrent food poisoning model of acquired inflammatory bowel disease using Salmonella enterica Typhimurium to investigate mucosal barrier erosion. Our findings reveal an innate Toll-like receptor 4-dependent mechanism activated by previous infection that induces Neu3 neuraminidase among colonic epithelial cells concurrent with increased Cathepsin-G protease secretion by Paneth cells. These anatomically separated host responses merge with the desialylation of nascent colonic Mucin-2 by Neu3 rendering the mucosal barrier susceptible to increased proteolytic breakdown by Cathepsin-G. Depletion of Cathepsin-G or Neu3 function using pharmacological inhibitors or genetic-null alleles protected against Mucin-2 proteolysis and barrier erosion and reduced the frequency and severity of colitis, revealing approaches to preserve and potentially restore the mucosal barrier.

3.
BMB Rep ; 54(11): 541-544, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34674797

RESUMO

Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis. [BMB Reports 2021; 54(11): 541-544].


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/patologia , Glicoproteínas/química , Glicoproteínas/metabolismo , Interações Hospedeiro-Patógeno , Processamento de Proteína Pós-Traducional , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Glicosilação , Humanos
4.
Prev Nutr Food Sci ; 21(2): 132-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27390730

RESUMO

Enhanced production of individual phenolic compounds by subcritical water hydrolysis (SWH) of pumpkin leaves was investigated at various temperatures ranging from 100 to 220°C at 20 min and at various reaction times ranging from 10 to 50 min at 160°C. Caffeic acid, p-coumaric acid, ferulic acid, and gentisic acid were the major phenolic compounds in the hydrolysate of pumpkin leaves. All phenolic compounds except gentisic acid showed the highest yield at 160°C, but gentisic acid showed the highest yield at 180°C. The cumulative amount of individual phenolic compounds gradually increased by 48.1, 52.2, and 78.4 µg/g dry matter at 100°C, 120°C, and 140°C, respectively, and then greatly increased by 1,477.1 µg/g dry matter at 160°C. The yields of caffeic acid and ferulic acid showed peaks at 20 min, while those of cinnamic acid, p-coumaric acid, p-hydroxybenzoic acid, and procatechuic acid showed peaks at 30 min. Antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power values gradually increased with hydrolysis temperature and ranged from 6.77 to 12.42 mg ascorbic acid equivalents/g dry matter and from 4.25 to 8.92 mmol Fe(2+)/100 g dry matter, respectively. Color L* and b* values gradually decreased as hydrolysis temperature increased from 100°C to 140°C. At high temperatures (160°C to 220°C), L* and b* values decreased suddenly. The a* value peaked at 160°C and then decreased as temperature increased from 160°C to 220°C. These results suggest that SWH of pumpkin leaves was strongly influenced by hydrolysis temperature and may enhanced the production of phenolic compounds and antioxidant activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA