RESUMO
CD731 is a GPI-anchored cell surface protein with ecto-5'-nucleotidase enzyme activity that plays a crucial role in adenosine production. While the roles of adenosine receptors (AR) on osteoblasts and osteoclasts have been unveiled to some extent, the roles of CD73 and CD73-generated adenosine in bone tissue are largely unknown. To address this issue, we first analyzed the bone phenotype of CD73-deficient (cd73(-/-)) mice. The mutant male mice showed osteopenia, with significant decreases of osteoblastic markers. Levels of osteoclastic markers were, however, comparable to those of wild-type mice. A series of in vitro studies revealed that CD73 deficiency resulted in impairment in osteoblast differentiation but not in the number of osteoblast progenitors. In addition, over expression of CD73 on MC3T3-E1 cells resulted in enhanced osteoblastic differentiation. Moreover, MC3T3-E1 cells expressed adenosine A(2A) receptors (A(2A)AR) and A(2B) receptors (A(2B)AR) and expression of these receptors increased with osteoblastic differentiation. Enhanced expression of osteocalcin (OC) and bone sialoprotein (BSP) observed in MC3T3-E1 cells over expressing CD73 were suppressed by treatment with an A(2B)AR antagonist but not with an A(2A) AR antagonist. Collectively, our results indicate that CD73 generated adenosine positively regulates osteoblast differentiation via A(2B)AR signaling.
Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Diferenciação Celular , Fêmur/enzimologia , Osteoblastos/enzimologia , Tíbia/enzimologia , Células 3T3 , 5'-Nucleotidase/deficiência , 5'-Nucleotidase/genética , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Biomarcadores/metabolismo , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/enzimologia , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , Diferenciação Celular/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/patologia , Genótipo , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteocalcina/metabolismo , Osteogênese , Fenótipo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Transdução de Sinais , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/patologia , Fatores de Tempo , Transfecção , Microtomografia por Raio-XRESUMO
Fibroblast growth factor-2 (FGF-2) regulates a variety of functions of the periodontal ligament (PDL) cell, which is a key player during tissue regeneration following periodontal tissue breakdown by periodontal disease. In this study, we investigated the effects of FGF-2 on the cell migration and related signaling pathways of MPDL22, a mouse PDL cell clone. FGF-2 activated the migration of MPDL22 cells and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and akt. The P13K inhibitors, Wortmannin and LY294002, suppressed both cell migration and akt activation in MPDL22, suggesting that the PI3K/akt pathway is involved in FGF-2-stimulated migration of MPDL22 cells. Moreover, in response to FGF-2, MPDL22 showed increased CD44 expression, avidity to hyaluronan (HA) partly via CD44, HA production and mRNA expression of HA synthase (Has)-1, 2, and 3. However, the distribution of HA molecular mass produced by MPDL22 was not altered by FGF-2 stimulation. Treatment of transwell membrane with HA facilitated the migration of MPDL22 cells and an anti-CD44 neutralizing antibody inhibited it. Interestingly, the expression of CD44 was colocalized with HA on the migrating cells when stimulated with FGF-2. Furthermore, an anti-CD44 antibody and small interfering RNA for CD44 significantly decreased the FGF-2-induced migration of MPDL22 cells. Taken together, PI3K/akt and CD44/HA signaling pathways are responsible for FGF-2-mediated cell motility of PDL cells, suggesting that FGF-2 accelerates periodontal regeneration by regulating the cellular functions including migration, proliferation and modulation of extracellular matrix production.
Assuntos
Movimento Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Ligamento Periodontal/citologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Inativação Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/enzimologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
INTRODUCTION: Prader-Willi syndrome is a complex genetic disease caused by lack of expression of paternally inherited genes on chromosome 15q11-q13. The prevalence of Prader-Willi syndrome is estimated to be one in 10,000 to 25,000. However, descriptions of the oral and dental phenotype are rare. CASE PRESENTATION: We describe the clinical presentation and periodontal findings in a 20-year-old Japanese man with previously diagnosed Prader-Willi syndrome. Clinical and radiographic findings confirmed the diagnosis of periodontitis. The most striking oral findings were anterior open bite, and crowding and attrition of the lower first molars. Periodontal treatment consisted of tooth-brushing instruction and scaling. Home care involved recommended use of adjunctive chlorhexidine gel for tooth brushing twice a week and chlorhexidine mouthwash twice daily. Gingival swelling improved, but further treatment will be required and our patient's oral hygiene remains poor. The present treatment of tooth-brushing instruction and scaling every three weeks therefore only represents a temporary solution. CONCLUSIONS: Rather than being a direct result of genetic defects, periodontal diseases in Prader-Willi syndrome may largely result from a loss of cuspid guidance leading to traumatic occlusion, which in turn leads to the development of periodontal diseases and dental plaque because of poor oral hygiene. These could be avoided by early interventions to improve occlusion and regular follow-up to monitor oral hygiene. This report emphasizes the importance of long-term follow-up of oral health care by dental practitioners, especially pediatric dentists, to prevent periodontal disease and dental caries in patients with Prader-Willi syndrome, who appear to have problems maintaining their own oral health.