Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hered ; 113(2): 121-144, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575083

RESUMO

The increasing feasibility of assembling large genomic datasets for non-model species presents both opportunities and challenges for applied conservation and management. A popular theme in recent studies is the search for large-effect loci that explain substantial portions of phenotypic variance for a key trait(s). If such loci can be linked to adaptations, 2 important questions arise: 1) Should information from these loci be used to reconfigure conservation units (CUs), even if this conflicts with overall patterns of genetic differentiation? 2) How should this information be used in viability assessments of populations and larger CUs? In this review, we address these questions in the context of recent studies of Chinook salmon and steelhead (anadromous form of rainbow trout) that show strong associations between adult migration timing and specific alleles in one small genomic region. Based on the polygenic paradigm (most traits are controlled by many genes of small effect) and genetic data available at the time showing that early-migrating populations are most closely related to nearby late-migrating populations, adult migration differences in Pacific salmon and steelhead were considered to reflect diversity within CUs rather than separate CUs. Recent data, however, suggest that specific alleles are required for early migration, and that these alleles are lost in populations where conditions do not support early-migrating phenotypes. Contrasting determinations under the US Endangered Species Act and the State of California's equivalent legislation illustrate the complexities of incorporating genomics data into CU configuration decisions. Regardless how CUs are defined, viability assessments should consider that 1) early-migrating phenotypes experience disproportionate risks across large geographic areas, so it becomes important to identify early-migrating populations that can serve as reliable sources for these valuable genetic resources; and 2) genetic architecture, especially the existence of large-effect loci, can affect evolutionary potential and adaptability.


Assuntos
Oncorhynchus mykiss , Salmão , Alelos , Animais , Evolução Biológica , Espécies em Perigo de Extinção , Oncorhynchus mykiss/genética , Salmão/genética
2.
Evol Appl ; 14(8): 1929-1957, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429740

RESUMO

Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.

3.
Evol Appl ; 13(9): 2316-2332, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005226

RESUMO

Recent studies have begun to elucidate the genetic basis for phenotypic traits in salmonid species, but many questions remain before these candidate genes can be directly incorporated into conservation management. In Chinook Salmon (Oncorhynchus tshawytscha), a region of major effect for migration timing has been discovered that harbors two adjacent candidate genes (greb1L, rock1), but there has been limited work to examine the association between these genes and migratory phenotypes at the individual, compared to the population, level. To provide a more thorough test of individual phenotypic association within lineages of Chinook Salmon, 33 candidate markers were developed across a 220 Kb region on chromosome 28 previously associated with migration timing. Candidate and neutral markers were genotyped in individuals from representative collections that exhibit phenotypic variation in timing of arrival to spawning grounds from each of three lineages of Chinook Salmon. Association tests confirmed the majority of markers on chromosome 28 were significantly associated with arrival timing and the strongest association was consistently observed for markers within the rock1 gene and the intergenic region between greb1L and rock1. Candidate markers alone explained a wide range of phenotypic variation for Lower Columbia and Interior ocean-type lineages (29% and 78%, respectively), but less for the Interior stream-type lineage (5%). Individuals that were heterozygous at markers within or upstream of rock1 had phenotypes that suggested a pattern of dominant inheritance for early arrival across populations. Finally, previously published fitness estimates from the Interior stream-type lineage enabled tests of association with arrival timing and two candidate markers, which revealed that fish with homozygous mature genotypes had slightly higher fitness than fish with premature genotypes, while heterozygous fish were intermediate. Overall, these results provide additional information for individual-level genetic variation associated with arrival timing that may assist with conservation management of this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA