Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(1): 192-205, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772415

RESUMO

Equine mesenchymal stromal cells (MSCs) have been found to be beneficial for the treatment of many ailments, including orthopedic injuries, due to their superior differentiation potential and immunomodulating properties. Cell therapies require large cell numbers, which are not efficiently generated using conventional static expansion methods. Expansion of equine cord blood-derived MSCs (eCB-MSCs) in bioreactors, using microcarriers as an attachment surface, has the potential to generate large numbers of cells with increased reproducibility and homogeneity compared with static T-flask expansion. This study investigated the development of an expansion process using Vertical-Wheel (VW) bioreactors, a single-use bioreactor technology that incorporates a wheel instead of an impeller. Initially, microcarriers were screened at small scale to assess eCB-MSC attachment and growth and then in bioreactors to assess cell expansion and harvesting. The effect of different donors, serial passaging, and batch versus fed batch were all examined in 0.1 L VW bioreactors. The use of VW bioreactors with an appropriate microcarrier was shown to be able to produce cell densities of up to 1E6 cells/mL, while maintaining cell phenotype and functionality, thus demonstrating great potential for the use of these bioreactors to produce large cell numbers for cell therapies.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Animais , Cavalos , Técnicas de Cultura de Células/métodos , Sangue Fetal , Reprodutibilidade dos Testes , Reatores Biológicos , Diferenciação Celular , Proliferação de Células
2.
Vet Clin North Am Equine Pract ; 39(3): 461-474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37574382

RESUMO

Over the past 2 decades, equine veterinarians are turning increasingly to stem cell therapies to repair damaged tissues or to promote healing through modulation of the immune system. Research is ongoing into optimizing practices associated with stem cell product transport, dosage, and administration. Culture-expanded equine mesenchymal stem cell therapies seem safe, even when used allogeneically, but various safety concerns should be considered. Stem cells and cellular reprogramming tools hold great promise for future equine therapies.


Assuntos
Doenças dos Cavalos , Células-Tronco Mesenquimais , Animais , Cavalos , Doenças dos Cavalos/terapia , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/veterinária
3.
BMC Vet Res ; 16(1): 477, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292200

RESUMO

Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Animais Domésticos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/veterinária , Células-Tronco Pluripotentes Induzidas/fisiologia , Medicina Regenerativa/métodos , Medicina Veterinária/métodos
4.
BMC Vet Res ; 12: 45, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26952099

RESUMO

BACKGROUND: Recently, equine multipotent mesenchymal stromal cells (MSC) have received significant attention as therapy for various conditions due to their proposed regenerative and immune-modulating capacity. MSC are commonly administered to the patient through a hypodermic needle. Currently, little information is available on the effect of such injection has on equine MSC immediate and delayed viability. We hypothesize that viability of equine MSC is not correlated with needle diameter during aspiration and injection. RESULTS: Using a 3 mL syringe, manual injection of equine cord blood (CB) or bone marrow-derived (BM) MSC with no needle and needles ranging in size from 18 to 30 Ga did not affect immediate MSC viability. Similarly, 24 h post-injection, MSC delayed viability was not different between any of the tested needles as determined by a resazurin-based proliferation assay. Using a 3 mL syringe, aspiration of MSC through 20, 25, and 30 Ga needles resulted in significant decreases in immediate viability with no change in delayed viability when compared to aspiration without a needle. BM- and CB-MSC were observed to be of similar size with a diameter ± SD of 19.8 ± 2.7 and 20.4 ± 2.2 µm, respectively. In comparison, the smallest needles, (30 Ga) have an internal diameter of 160 µm. CONCLUSIONS: Following injection, needle diameter did not affect immediate or delayed viability of equine MSC. Following aspiration through needles sizes 20 Ga and smaller, immediate viability, but not delayed viability, decreased. As a result, an 18 Ga or larger needle should be utilized for aspiration of cell suspensions. In contrast, needle selection for MSC injection should be based on clinical preference and experience rather than concerns over decreasing MSC viability.


Assuntos
Sobrevivência Celular , Células-Tronco Mesenquimais , Agulhas , Animais , Células Cultivadas , Cavalos , Injeções/instrumentação , Injeções/métodos
5.
Health Econ ; 23(11): 1326-39, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038360

RESUMO

Congress passed the Emergency Medical Treatment and Active Labor Act (EMTALA) in 1986, guaranteeing a standard of medical care to anyone who entered an emergency room. This guarantee made default a more reliable substitute for medical insurance. I construct a tractable structural model of the medical insurance market and find that repealing EMTALA would increase the fraction of the population with insurance while decreasing its price.


Assuntos
Falência da Empresa , Serviços Médicos de Emergência/legislação & jurisprudência , Seguro Saúde/economia , Seguro Saúde/legislação & jurisprudência , Modelos Econométricos , Política de Saúde , Humanos , Seguro Saúde/estatística & dados numéricos , Transferência de Pacientes/legislação & jurisprudência , Estados Unidos
6.
J Biol Rhythms ; 39(3): 237-269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379166

RESUMO

Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.


Assuntos
Ritmo Circadiano , Saúde Única , Animais , Humanos , Bem-Estar do Animal , Cães , Galinhas , Gatos , Cavalos , Medicina Veterinária
7.
Stem Cells Dev ; 32(11-12): 271-291, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36884307

RESUMO

Induced pluripotent stem cells (iPSCs) are produced by resetting the epigenetic and transcriptional landscapes of somatic cells to express the endogenous pluripotency network and revert them back to an undifferentiated state. The reduced ethical concerns associated with iPSCs and their capacity for extensive self-renewal and differentiation make them an unparalleled resource for drug discovery, disease modeling, and novel therapies. Canines (c) share many human diseases and environmental exposures, making them a superior translational model for drug screening and investigating human pathologies compared to other mammals. However, well-defined protocols for legitimate ciPSC production are lacking. Problems during canine somatic cell reprogramming (SCR) yield putative ciPSCs with incomplete pluripotency, at very low efficiencies. Despite the value of ciPSCs, the molecular mechanisms underlying their unsuccessful production and how these may be addressed have not been fully elucidated. Factors, including cost, safety, and feasibility, may also limit the widespread clinical adoption of ciPSCs for treating canine disease. The purpose of this narrative review is to identify barriers to canine SCR on molecular and cellular levels, using comparative research to inform potential solutions to their use in both research and clinical contexts. Current research is opening new doors for the application of ciPSCs in regenerative medicine for the mutual benefit of veterinary and human medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Cães , Humanos , Diferenciação Celular , Reprogramação Celular/genética , Mamíferos
8.
Stem Cells Dev ; 32(21-22): 693-702, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578107

RESUMO

Mesenchymal stromal cells (MSCs) are a promising cell source for cartilage tissue regeneration in animals and humans but with large interdonor variation in their in vitro chondrogenic differentiation potential. Underlying molecular mechanisms responsible for culture-expanded MSC heterogeneity remain poorly understood. In this study, we sought to identify variations in microRNA (miRNA) signatures associated with cultured equine MSC chondrogenic differentiation potential from different donors. Neocartilage tissue generated from equine cord blood-derived MSCs was categorized as having either high or low chondrogenic potential (LCP) based on their histological appearance and quantification of glycosaminoglycan deposition. Using next-generation sequencing, we identified 30 differentially expressed miRNAs among undifferentiated MSC cultures that corresponded with their chondrogenic potential. Of note, MSCs with LCP upregulated miR-146a and miR-487b-3p, which was also observed by quantitative real-time polymerase chain reaction. Our findings suggest that miRNA profiling of equine MSC cultures may have prognostic value in selecting MSC donors with regard to their chondrogenic differentiation potential.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , Animais , Cavalos , MicroRNAs/genética , Prognóstico , Diferenciação Celular/genética , Cartilagem , Condrogênese/genética , Células Cultivadas , Condrócitos
9.
Stem Cells Dev ; 31(1-2): 18-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779250

RESUMO

Inflammation-associated disorders are significant causes of morbidity in horses. Equine single-donor mesenchymal stromal cells (sdMSCs) hold promise as cell-therapy candidates due to their secretory nonprogenitor functions. This has been demonstrated by mononuclear cell suppression assays (MSAs) showing that sdMSCs are blood mononuclear cell (BMC) suppressive in vitro. sdMSCs derived from umbilical cord blood are of clinical interest due to their ease of procurement, multipotency, and immunomodulatory ability. Due to the inherent donor-to-donor heterogeneity of MSCs, the development of robust and easily deployable methods of potency assessment is critical for improving MSCs' predictability in treating inflammatory diseases. This study focuses on the development of robust in vitro potency assays and the assessment of potential sdMSC therapeutic end products generated from pooled sdMSCs (pMSCs). We hypothesized that, compared to MSA using only one donor, MSA using pooled BMCs (pBMCs) is a more robust sdMSC potency assay due to reduced donor BMC heterogeneity. pBMCs were generated by pooling equine BMCs isolated from peripheral blood of five donors in equal ratios. pBMCs were labeled with carboxyfluorescein succinimidyl ester (CFSE) and stored in liquid nitrogen until use. Similarly, pooling sdMSCs from multiple equine donors in equal ratios generated pMSCs. sdMSC cultures were assessed with pBMCs in MSA using Bromodeoxyuridine ELISA and CFSE. Proliferation assessment of BMCs from individual donors revealed varied responses to concanavalin A (ConA) stimulation. MSA using BMCs from single donors further demonstrated BMC donor variability. Utilizing this assay, we have also found that the immunosuppressive potencies of pMSCs are at least equal, if not more, than the calculated mean of individual cultures. MSA based on pBMCs provides a consistent and reproducible equine sdMSC potency assay. This knowledge could be used in production monitoring of cellular potency and as release criteria before clinical use.


Assuntos
Células-Tronco Mesenquimais , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Sangue Fetal , Cavalos , Imunomodulação , Leucócitos Mononucleares
10.
Osteoarthr Cartil Open ; 4(2): 100263, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36475280

RESUMO

Objective: To evaluate the effect of Transient Receptor Potential Vanilloid 4 (TRPV4) cation channel modulation on mesenchymal stromal cell (MSC)-derived neocartilage. Methods: RT-PCR was performed to evaluate mRNA levels of chondrogenic, hypertrophic and candidate mechanoresponsive genes in equine neocartilage sheets exposed to pulses of the TRPV4 agonist (GSK101) at different concentrations (N â€‹= â€‹10). Biochemical assays and mechanical tests (double indentation and unconfined compression) evaluated neocartilage properties (N â€‹= â€‹5). Results: GSK101 treatment (1 â€‹nM) increased ACAN levels after treatment for 1-h per day for 3 days. No increase was detected for hypertrophic markers RUNX2, MMP13, MMP1, ALP or COL10A1 at this concentration. This treatment regimen also increased sGAG content and enhanced compressive properties compared to untreated controls. GSK101 showed no effect on candidate mechanoresponsive genes at the time-point of analysis. Conclusions: Chemical activation of TRPV4 signalling can be used as a strategy to enhance matrix synthesis and maturation of MSC-derived engineered neocartilage and augment its load-bearing capacity.

11.
Front Vet Sci ; 9: 859025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591873

RESUMO

Fetal bovine serum (FBS) remains widely used as a supplement in cell culture media used in the isolation and expansion of mesenchymal stromal cells (MSC) despite longstanding practical, clinical, and ethical concerns over its use. As a result, research on alternative culture media supplement solutions that conserve crucial MSC characteristics has become increasingly relevant. Species-specific supplements and serum-free media such as platelet lysate or chemically defined media have been assessed for their effect in MSC cultures regarding proliferation, differentiation, and immunomodulatory capacity. While none of the alternatives offer a complete solution in replacing traditional FBS supplemented media for culturing MSCs for all species, short-term or transitional use of FBS-free media can perform equally well and could address some of the concerns over the use of FBS.

13.
Cartilage ; 12(2): 222-225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-30841716

RESUMO

OBJECTIVES: RNA isolation is necessary for the evaluation of gene expression. Due to the nature of its extracellular matrix, RNA isolation from articular hyaline cartilage is difficult and thus the tissue is commonly enzymatically digested in order to extract RNA from the obtained chondrocytes. We hypothesized that the digestion process affects the expression levels of common cartilage-associated genes. DESIGN: Expression of cartilage-associated genes was compared between intact cartilage and digested chondrocytes from weight bearing and non-weight bearing regions of the equine fetlock joint. RESULTS: The gene expression of SOX9, COL1A2, COL2A1, ACAN, and COLX were analyzed. Digested cartilage showed a significant decrease in the expression of COL1A2, COL2A1, and ACAN compared to intact cartilage in both joint regions, and an increase in COLX expression in non-weight bearing cartilage only. CONCLUSIONS: Enzymatic digestion of cartilage significantly impacts gene expression profile. We conclude that while RNA isolation from intact cartilage is more technically difficult, determination of gene expression should be conducted on intact cartilage if true representation of the in vivo processes is sought.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteínas da Matriz Extracelular/análise , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Animais , Cavalos/genética , Proteólise , RNA/isolamento & purificação
14.
Front Vet Sci ; 8: 779109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917671

RESUMO

In the past decade, the potential to translate scientific discoveries in the area of regenerative therapeutics in veterinary species to novel, effective human therapies has gained interest from the scientific and public domains. Translational research using a One Health approach provides a fundamental link between basic biomedical research and medical clinical practice, with the goal of developing strategies for curing or preventing disease and ameliorating pain and suffering in companion animals and humans alike. Veterinary clinical trials in client-owned companion animals affected with naturally occurring, spontaneous disease can inform human clinical trials and significantly improve their outcomes. Innovative cell therapies are an area of rapid development that can benefit from non-traditional and clinically relevant animal models of disease. This manuscript outlines cell types and therapeutic applications that are currently being investigated in companion animals that are affected by naturally occurring diseases. We further discuss how such investigations impact translational efforts into the human medical field, including a critical evaluation of their benefits and shortcomings. Here, leaders in the field of veterinary regenerative medicine argue that experience gained through the use of cell therapies in companion animals with naturally occurring diseases represent a unique and under-utilized resource that could serve as a critical bridge between laboratory/preclinical models and successful human clinical trials through a One-Health approach.

15.
Front Microbiol ; 11: 606404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335522

RESUMO

The emergence of "superbugs" resistant to antimicrobial medications threatens populations both veterinary and human. The current crisis has come about from the widespread use of the limited number of antimicrobials available in the treatment of livestock, companion animal, and human patients. A different approach must be sought to find alternatives to or enhancements of present conventional antimicrobials. Mesenchymal stromal cells (MSC) have antimicrobial properties that may help solve this problem. In the first part of the review, we explore the various mechanisms at work across species that help explain how MSCs influence microbial survival. We then discuss the findings of recent equine, canine, and bovine studies examining MSC antimicrobial properties in which MSCs are found to have significant effects on a variety of bacterial species either alone or in combination with antibiotics. Finally, information on the influence that various antimicrobials may have on MSC function is reviewed. MSCs exert their effect directly through the secretion of various bioactive factors or indirectly through the recruitment and activation of host immune cells. MSCs may soon become a valuable tool for veterinarians treating antimicrobial resistant infections. However, a great deal of work remains for the development of optimal MSC production conditions and testing for efficacy on different indications and species.

16.
Front Vet Sci ; 7: 584193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33665213

RESUMO

3D bioprinting is a rapidly evolving industry that has been utilized for a variety of biomedical applications. It differs from traditional 3D printing in that it utilizes bioinks comprised of cells and other biomaterials to allow for the generation of complex functional tissues. Bioprinting involves computational modeling, bioink preparation, bioink deposition, and subsequent maturation of printed products; it is an intricate process where bioink composition, bioprinting approach, and bioprinter type must be considered during construct development. This technology has already found success in human studies, where a variety of functional tissues have been generated for both in vitro and in vivo applications. Although the main driving force behind innovation in 3D bioprinting has been utility in human medicine, recent efforts investigating its veterinary application have begun to emerge. To date, 3D bioprinting has been utilized to create bone, cardiovascular, cartilage, corneal and neural constructs in animal species. Furthermore, the use of animal-derived cells and various animal models in human research have provided additional information regarding its capacity for veterinary translation. While these studies have produced some promising results, technological limitations as well as ethical and regulatory challenges have impeded clinical acceptance. This article reviews the current understanding of 3D bioprinting technology and its recent advancements with a focus on recent successes and future translation in veterinary medicine.

17.
Front Vet Sci ; 7: 554306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344521

RESUMO

Extracorporeal shock wave therapy (ESWT) has been shown to induce different biological effects on a variety of cells, including regulation and stimulation of their function and metabolism. ESWT can promote different biological responses such as proliferation, migration, and regenerations of cells. Recent studies have shown that mesenchymal stromal cells (MSCs) secrete factors that enhance the regeneration of tissues, stimulate proliferation and differentiation of cells, and decrease inflammatory and immune reactions. Clinically, the combination of these two therapies has been used as a treatment for tendon and ligament lesions in horses; however, there is no scientific evidence supporting this combination of therapies in vivo. Therefore, the objectives of the study were to evaluate the effects of ESWT on equine umbilical cord blood mesenchymal stromal cells (CB-MSCs) proliferative, metabolic, migrative, differentiation, and immunomodulatory properties in vitro. Three equine CB-MSC cultures from independent donors were treated using an electrohydraulic shock wave generator attached to a water bath. All experiments were performed as triplicates. Proliferation, viability, migration and immunomodulatory properties of the cells were evaluated. Equine CB-MSCs were induced to evaluate their trilineage differentiation potential. ESWT treated cells had increased metabolic activity, showed positive adipogenic, osteogenic, and chondrogenic differentiation, and showed higher potential for differentiation toward the adipogenic and osteogenic cell fates. ESWT treated cells showed similar immunomodulatory properties to none-ESWT treated cells. Equine CB-MSCs are responsive to ESWT treatment and showed increased metabolic, adipogenic and osteogenic activity, but unaltered immunosuppressive properties. In vivo studies are warranted to determine if synergistic effects occur in the treatment of musculoskeletal injuries if ESWT and equine CB-MSC therapies are combined.

18.
Stem Cells Dev ; 29(1): 38-48, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696786

RESUMO

Mesenchymal stromal cells (MSCs) are attractive candidates for immunomodulatory cell therapy. However, it remains unknown how far therapeutic efficacy and potency are dependent on the dosage and activity of the MSCs. We previously observed that infusion of MSCs leads to rapid and transient changes in cytokine expression in blood, lung, and liver. In the present study, increasing doses of syngeneic adipose tissue-derived MSCs were infused in healthy mice and systemic changes in G-CSF, IL6, IL-10, and CXCL5 were detected 2 h after administration of 3 × 105 MSCs per animal, but not at lower doses. In lung and liver tissue, dose-dependent effects of MSCs on cytokine mRNA expression levels were detected from doses as low as 3 × 103 MSCs. Infusion of secretome-deficient or IFNγ-activated MSCs in healthy mice had similar effects on systemic cytokine levels as control MSCs, suggesting that in vivo at least the initial systemic effect of MSC administration is independent of the level of activity of MSCs, but depends on the response of host cells to MSCs. The results of this study reveal a rapid dose-dependent effect of MSCs and stress the important role of host cells in MSC treatment. This knowledge contributes to the design of rational MSC trials and to the quest for clinical efficacy of MSC therapy.


Assuntos
Tecido Adiposo/citologia , Imunomodulação , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Contagem de Células , Células Cultivadas , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Feminino , Expressão Gênica , Humanos , Interferons/farmacologia , Fígado/metabolismo , Pulmão/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fatores de Tempo
19.
Cytotherapy ; 11(4): 443-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513899

RESUMO

BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre-culture separation of red and white blood cells was done using either PrepaCyte?-EQ medium or Ficoll-Paque? PREMIUM density medium. Regular FBS and MSC-qualified FBS were compared for their ability to support the establishment of putative primary MSC colonies. RESULTS AND CONCLUSIONS: Our results indicate that PrepaCyte-EQ medium is superior to Ficoll-Paque PREMIUM density medium for the isolation of putative equine CB MSC and that MSC-qualified FBS may improve the isolation efficiency.


Assuntos
Separação Celular/métodos , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Células Estromais/citologia , Adipogenia , Animais , Condrogênese , Ensaio de Unidades Formadoras de Colônias , Cavalos , Leucócitos Mononucleares/citologia , Osteogênese
20.
Can Vet J ; 50(2): 155-65, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19412395

RESUMO

This paper provides a bird's-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine.The understanding of equine stem cell biology, biofactors, and scaffolds, and their potential therapeutic use in horses are rudimentary at present. Mesenchymal stem cell isolation has been proclaimed from several equine tissues in the past few years. Based on the criteria of the International Society for Cellular Therapy, most of these cells are more correctly referred to as multipotent mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering - cells, biological factors, and biomaterials - are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources.The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently in controlled clinical trials in equine patients to be regarded as evidence-based medicine. In the meantime, the medical mantra "do no harm" should prevail, and the application of stem cell-based therapies in the horse should be done critically and cautiously, and treatment outcomes (good and bad) should be recorded and reported.Stem cell and tissue engineering research in the horse has exciting comparative and equine specific perspectives that most likely will benefit the health of horses and humans. Controlled, well-designed studies are needed to move this new equine research field forward.


Assuntos
Doenças dos Cavalos/terapia , Transplante de Células-Tronco/veterinária , Engenharia Tecidual/veterinária , Medicina Veterinária/tendências , Animais , Sobrevivência de Enxerto , Cavalos , Células-Tronco/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA