Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(5): 379-391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301257

RESUMO

GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.


Assuntos
COVID-19 , Fator 15 de Diferenciação de Crescimento , Pulmão , Pseudomonas aeruginosa , SARS-CoV-2 , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Humanos , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Infecções por Pseudomonas/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Modelos Animais de Doenças
2.
Immunohorizons ; 8(1): 122-135, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289252

RESUMO

Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.


Assuntos
Infecções por Klebsiella , Neutrófilos , Fator de Transcrição STAT1 , Animais , Camundongos , Interleucina-17 , Klebsiella pneumoniae , Pulmão/microbiologia , Células Mieloides , Neutrófilos/imunologia , Fator de Transcrição STAT1/metabolismo , Infecções por Klebsiella/imunologia
3.
Int J Pediatr Otorhinolaryngol ; 157: 111102, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489230

RESUMO

BACKGROUND: Noninvoluting congenital hemangiomas (NICH) are rare and poorly understood vascular tumors that are present at birth, characterized by lack of growth after birth and lack of involution. We report uncharacteristic cases of NICH hypertrophy occurring later in life. METHODS: This is a case series describing the clinical presentation, management, and histologic characteristics of two cases of NICH hypertrophy. RESULTS: Two patients with a NICH of the scalp experienced lesion hypertrophy in teenage or early adult life. Case 1 is a 14-year-old female who presented with a flat left parietal scalp lesion that at first grew slowly with the patient; however, over the span of months grew substantially resulting in an exophytic lesion. The patient had the lesion surgically excised. Case 2 is a 26-year-old female with NICH of left occipital scalp and posterior neck who noted new nodules on the inferior border of the lesion. MRA/MRI showed extension into the occipital calvarium, level V of the neck, and paraspinal musculature. The patient elected to observe given the extent of the lesion and her minimal symptoms. CONCLUSION: Although postnatal growth of NICH have been described, cases usually occur during the pre-adolescent period where growth is usually proportional to overall growth of the patient. This study describes two cases of rapid onset NICH hypertrophy occurring later in life. Knowledge of the potential for delayed hypertrophy may lead families to seek earlier intervention or opt for more definitive interventions. Additionally, recognition of these variable distinctions will contribute to a better understanding of CH and its various subtypes.


Assuntos
Hemangioma , Adolescente , Adulto , Feminino , Hemangioma/diagnóstico por imagem , Hemangioma/cirurgia , Humanos , Hipertrofia , Recém-Nascido , Imageamento por Ressonância Magnética , Pesquisa , Couro Cabeludo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA