Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Immunol ; 209(4): 731-741, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896337

RESUMO

IL-6 is elevated in obese individuals and participates in the metabolic dysfunction associated with that condition. However, the mechanisms that promote IL-6 expression in obesity are incompletely understood. Because elevated levels of palmitate and LPS have been reported in obesity, we investigated whether these agents interact to potentiate IL-6 production. In this study, we report that LPS induces higher levels of IL-6 in human monocytes in the presence of palmitate. Notably, the priming effect of palmitate is associated with enhanced p300 binding and transcription factor recruitment to Il6 promoter regions. Gene silencing of p300 blocks this action of palmitate. RNA polymerase II recruitment was also enhanced at the Il6 promoter in palmitate/LPS-exposed cells. Acetylation levels of H3K9 and H3K18 were increased in monocytes treated with palmitate. Moreover, LPS stimulation of palmitate-treated cells led to increased levels of the transcriptionally permissive acetylation marks H3K9/H3K18 in the Il6 promoter compared with LPS alone. The effect of palmitate on LPS-induced IL-6 production was suppressed by the inhibition of histone acetyltransferases. Conversely, histone deacetylase inhibitors trichostatin A or sodium butyrate can substitute for palmitate in IL-6 production. Esterification of palmitate with CoA was involved, whereas ß-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and H3K9/H3K18 acetylation. Monocytes of obese individuals showed significantly higher H3K9/H3K18 acetylation and Il6 expression. Overall, our findings support a model in which increased levels of palmitate in obesity create a setting for LPS to potentiate IL-6 production via chromatin remodeling, enabling palmitate to contribute to metabolic inflammation.


Assuntos
Lipopolissacarídeos , RNA Polimerase II , Acetilação , Histonas/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Obesidade , Palmitatos/farmacologia , RNA Polimerase II/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894865

RESUMO

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Estresse do Retículo Endoplasmático , Glucose , Inflamação , NF-kappa B/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
3.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299302

RESUMO

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Assuntos
Acetatos/farmacologia , Quimiocina CCL2/biossíntese , Ácidos Graxos Voláteis/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Acetatos/administração & dosagem , Quimiocina CCL2/genética , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Voláteis/administração & dosagem , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Monócitos/imunologia , NF-kappa B/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Triazenos/farmacologia , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/farmacologia
4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638857

RESUMO

IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.


Assuntos
Quimiocina CCL2/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-8/genética , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CCL2/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1
5.
J Immunol ; 200(10): 3599-3611, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632147

RESUMO

The chemokine CCL2 (also known as MCP-1) is a key regulator of monocyte infiltration into adipose tissue, which plays a central role in the pathophysiology of obesity-associated inflammation and insulin resistance. It remains unclear how CCL2 production is upregulated in obese humans and rodents. Because elevated levels of the free fatty acid (FFA) palmitate and TNF-α have been reported in obesity, we studied whether these agents interact to trigger CCL2 production. Our data show that treatment of THP-1 and primary human monocytic cells with palmitate and TNF-α led to a marked increase in CCL2 production compared with either treatment alone. Mechanistically, we found that cooperative production of CCL2 by palmitate and TNF-α did not require MyD88, but it was attenuated by blocking TLR4 or TRIF. IRF3-deficient cells did not show synergistic CCL2 production in response to palmitate/TNF-α. Moreover, IRF3 activation by polyinosinic-polycytidylic acid augmented TNF-α-induced CCL2 secretion. Interestingly, elevated NF-κB/AP-1 activity resulting from palmitate/TNF-α costimulation was attenuated by TRIF/IRF3 inhibition. Diet-induced C57BL/6 obese mice with high FFAs levels showed a strong correlation between TNF-α and CCL2 in plasma and adipose tissue and, as expected, also showed increased adipose tissue macrophage accumulation compared with lean mice. Similar results were observed in the adipose tissue samples from obese humans. Overall, our findings support a model in which elevated FFAs in obesity create a milieu for TNF-α to trigger CCL2 production via the TLR4/TRIF/IRF3 signaling cascade, representing a potential contribution of FFAs to metabolic inflammation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Quimiocina CCL2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Palmitatos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Humanos , Resistência à Insulina/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
6.
Cell Physiol Biochem ; 52(2): 212-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30816669

RESUMO

BACKGROUND/AIMS: MIP-1α (macrophage inflammatory protein 1α)/CCL3 chemokine is associated with the adipose tissue inflammation in obesity. Both MIP-1α and free fatty acids are elevated in obesity/T2D. We asked if free fatty acid palmitate could modulate MIP1α expression in the human monocytic cells. METHODS: Human monocytic THP-1 cells and macrophages were stimulated with palmitate and TNF-α (positive control). MIP-1α expression was measured with real time RT-PCR, Flow Cytometry and ELISA. Signaling pathways were identified by using THP-1-XBlue™ cells, THP-1-XBlue™-defMyD cells, anti-TLR4 mAb and TLR4 siRNA. RESULTS: Our data show that palmitate induced significant increase in MIP1α production in monocytic THP-1 cells/macrophages. MIP-1α induction was significantly suppressed when cells were treated with anti-TLR4 antibody prior stimulation with palmitate. Using TLR4 siRNA, we further demonstrate that palmitate-induced MIP-1α expression in monocytic cells requires TLR4. Moreover, THP1 cells defective in MyD88, a major adaptor protein involved in TLR4 signaling, were unable to induce MIP-1α production in response to palmitate. Palmitate-induced MIP-1α expression was suppressed by inhibition of MAPK, NFkB and PI3K signaling pathways. In addition, palmitate-induced NF-κB/AP-1 activation was observed while production of MIP-1α. However, this activation of NF-κB/AP-1 was abrogated in MyD88 deficient cells. CONCLUSION: Overall, these results show that palmitate induces TLR4dependent MIP-1α expression requiring the MyD88 recruitment and activation of MAPK, NF-κB/AP-1 and PI3K signaling. It implies that the increased systemic levels of free fatty acid palmitate in obesity/T2D may contribute to metabolic inflammation through excessive production of MIP-1a.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/metabolismo , Ácido Palmítico/farmacologia , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Macrófagos/patologia , Monócitos/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Células THP-1 , Receptor 4 Toll-Like/genética
7.
Cell Physiol Biochem ; 53(1): 1-18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31162913

RESUMO

BACKGROUND/AIMS: Innate immune toll-like receptors (TLRs) are emerging as nutrient sensors. Oxidative stress in the adipose tissue in obesity acts as a critical early trigger of altered pathophysiology. TLR2/TLR4 adipose upregulation has been associated with insulin resistance in humans; however, it remains unclear whether oxidative stress can modulate expression of TLR2/4 and related immune-metabolic regulators (IRF3/5) in immune cells. We, therefore, assessed their expression along with proinflammatory cytokines in the human PBMC following induction of oxidative stress. METHODS: PBMC were isolated from blood of healthy donors using Ficoll-Paque method and cells were treated with H2O2 to induce oxidative stress. ROS was measured by DCFH-DA assay. Target gene and protein expression was determined using real-time RT-PCR and flow cytometry/confocal microscopy, respectively. TLR2/4 expression by H2O2 in presence of ROS-inhibitors or leptin/LPS/fatty acids was also assessed. Expression of phosphorylated/total ERK1/2, c-Jun, p38, and NF-κB was determined by western blotting. The data (mean±SEM) were compared using unpaired student's t-test or ANOVA; all P-values <0.05 were considered significant. RESULTS: TLR2/4 mRNA/protein expression was elevated by oxidative stress in PBMC compared to controls (P<0.001). This induction was abrogated by apocynin/N-acetyl cysteine treatments (P<0.01). H2O2-induced TLR2/4 gene expression was further enhanced by leptin, LPS, oleate, or palmitate (P<0.05). Oxidative stress also promoted expression of IRF3/5 and proinflammatory cytokines including IFN-γ, IL-1ß, IL-6, TNF-α, and MCP-1/CCL2. This oxidative stress in PBMC involved MAPK/NF-κB dependent signaling. CONCLUSION: Taken together, oxidative stress upregulates expression of TLR2/4, IRF3/5 and signature proinflammatory cytokines in PBMC, involving MAPK/NF-κB dependent signaling, all of which may have implications for metabolic inflammation.


Assuntos
Inflamação/genética , Estresse Oxidativo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Regulação para Cima , Células Cultivadas , Humanos , Inflamação/metabolismo , Fator Regulador 3 de Interferon/genética , Fatores Reguladores de Interferon/genética , Leucócitos Mononucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Cell Physiol Biochem ; 52(4): 908-921, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964608

RESUMO

BACKGROUND/AIMS: Increased circulatory levels of both TNF-α and CCL4/MIP-1ß are found in metabolic diseases. However, it is unclear whether TNF-α which is a signature proinflammatory cytokine involved in metabolic inflammation, can induce/promote the expression of CCL4. METHODS: THP-1 human monocytic cells and THP-1-derived macrophages were stimulated with TNF-α and LPS-treatment as a positive control. CCL4 mRNA/protein expression was measured using qRT-PCR/ELISA, respectively. Stress-activated protein kinases (SAPK)/ c-Jun N-terminal kinase (JNK) activity was determined using the assay kit. Mechanistic pathways were studied using anti-TNFR1/2 antibodies, pharmacological inhibitors, siRNAs, and NF-κB/AP-1 reporter-expressing THP-1-XBlue cells. Phosphorylation of signaling molecules was assessed by Western blotting. RESULTS: TNF-α induces CCL4 expression at mRNA and protein levels, in both THP-1 monocytic cells and macrophages (P<0.05). TNF-α-driven CCL4 production was markedly abrogated by pre-treatment with anti-TNFR1/2 neutralizing antibodies. TNF-α treatment induced phosphorylation of SAPK/JNK, c-Jun, and NF-κB. Genetic and/or pharmacologic inhibition of SAPK/JNK and NF-κB pathways suppressed the TNF-α-induced CCL4 expression (P<0.05). NF-κB/AP-1 activity was found to be significantly increased in TNFα-treated SEAP reporter-expressing monocytic cells. CONCLUSION: These data suggest that TNF-α drives CCL4 expression in THP-1 monocytic cells/macrophages via the activation of SAPK/JNK and NF-κB pathways. The findings may provide new insights into understanding the regulatory role of TNF-α in augmenting CCL4 expression during inflammatory conditions.


Assuntos
Quimiocina CCL4/biossíntese , Regulação da Expressão Gênica , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Monócitos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Quimiocina CCL4/genética , Humanos , MAP Quinase Quinase 4/genética , Monócitos/citologia , NF-kappa B/genética , Células THP-1 , Fator de Necrose Tumoral alfa/genética
9.
Diabetes Metab Res Rev ; 35(2): e3087, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30339734

RESUMO

BACKGROUND: Chemokines produced by adipose tissue (AT) are involved in the development of chronic low-grade inflammation in obese humans and rodents. AT CCL19 expression in obesity and its association with metabolic inflammation and insulin resistance are poorly understood. This study aimed to investigate the effects of CCL19 gene expression on inflammatory markers in subcutaneous AT and insulin resistance. METHODS: Subcutaneous adipose samples were collected from 56 non-diabetic (26-obese, 21-overweight, and 9-lean) individuals. Expression of CCL19 and inflammatory markers was determined using real-time RT-PCR. Plasma C-reactive protein (CRP) and adiponectin were measured by ELISA. Insulin sensitivity was assessed using homeostasis model assessment index (HOMA). RESULTS: CCL19 expression was significantly higher in obese compared with lean individuals (P < 0.034). The elevated expression of CCL19 associated positively with body mass index (r = 0.253; P = 0.049). CCL19 expression correlated positively with IL-8 (r = 0.39; P = 0.006), IL-12 (r = 0.43; P = 0.003), IP-10 (r = 0.25; P = 0.07), CCL5 (r = 0.37; P = 0.011), CCR2 (r = 0.44; P = 0.001), and CCR5 (r = 0.35; P = 0.009). Additionally, CCL19 was positively correlated with triglycerides (TG: r = 0.41; P = 0.001), fasting blood glucose (FBG: r = 0.49; P < 0.0001), glycated haemoglobin (HbA1c: r = 0.396; P = 0.001), and CRP (r = 0.387; P = 0.019) whereas it had negative association with HDL cholesterol (r = -0.282; P = 0.035) and adiponectin (-0.393; P = 0.019). Notably, HOMA-IR correlated positively with CCL19 (r = 0.38; P = 0.01). In multiple regression analysis, CCL19 is an independent predictor of IL-8 and IL-12. CONCLUSIONS: These data demonstrate that increased AT expression of CCL19 in obesity may represent a molecular link between metabolic inflammation and insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Quimiocina CCL19/metabolismo , Inflamação/etiologia , Resistência à Insulina , Obesidade/complicações , Sobrepeso/complicações , Magreza , Adulto , Biomarcadores/análise , Estudos de Casos e Controles , Quimiocina CCL19/genética , Feminino , Seguimentos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Prognóstico
10.
Int J Mol Sci ; 20(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546972

RESUMO

Chronic low-grade inflammation, also known as metabolic inflammation, is a hallmark of obesity and parallels with the presence of elevated circulatory levels of free fatty acids and inflammatory cytokines/chemokines. CCL4/MIP-1ß chemokine plays a key role in the adipose tissue monocyte recruitment. Increased circulatory levels of TNF-α, palmitate and CCL4 are co-expressed in obesity. We asked if the TNF-α/palmitate could interact cooperatively to augment the CCL4 production in human monocytic cells and macrophages. THP-1 cells/primary macrophages were co-treated with TNF-α/palmitate and CCL4 mRNA/protein expression was assessed using qRT-PCR/ELISA. TLR4 siRNA, a TLR4 receptor-blocking antibody, XBlue™-defMyD cells and pathway inhibitors were used to decipher the signaling mechanisms. We found that TNF-α/palmitate co-stimulation augmented the CCL4 expression in monocytic cells and macrophages compared to controls (p < 0.05). TLR4 suppression or neutralization abrogated the CCL4 expression in monocytic cells. Notably, CCL4 cooperative induction in monocytic cells was: (1) Markedly less in MyD88-deficient cells, (2) IRF3 independent, (3) clathrin dependent and (4) associated with the signaling mechanism involving ERK1/2, c-Jun, JNK and NF-κB. In conclusion, TNF-α/palmitate co-stimulation promotes the CCL4 expression in human monocytic cells through the mechanism involving a TLR4-MyD88 axis and MAPK/NF-κB pathways. These findings unravel a novel mechanism of the cooperative induction of CCL4 by TNF-α and palmitate which could be relevant to metabolic inflammation.


Assuntos
Quimiocina CCL4/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ácido Palmítico/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Monócitos/citologia , Células THP-1
11.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443599

RESUMO

Elevated levels of IL-8 (CXCL8) in obesity have been linked with insulin resistance and type 2 diabetes (T2D). The mechanisms that lead to the profound production of IL-8 in obesity remains to be understood. TNF-α and saturated free fatty acids (FFAs) are increased in obese humans and correlate with insulin resistance. Hence, we sought to investigate whether the cooccurrence of TNF-α and FFAs led to increase the production of IL-8 by human monocytes. We found that co-stimulation of human monocytes with palmitate and TNF-α led to increased IL-8 production as compared to those stimulated with palmitate or TNF-α alone. The synergistic production of IL-8 by TNF-α/palmitate was suppressed by neutralizing anti- Toll like receptor 4 (TLR4) antibody and by genetic silencing of TLR4. Both MyD88-deficient and MyD88-competent cells responded comparably to TNF-α/Palmitate. However, TIR-domain-containing adapter-inducing interferon (TRIF) inhibition or interferon regulatory transcription factor 3 (IRF3) knockdown partly blocked the synergistic production of IL-8. Our human data show that increased adipose tissue TNF-α expression correlated positively with IL-8 expression (r = 0.49, P = 0.001). IL-8 and TNF-α correlated positively with macrophage markers including CD68, CD163 and CD86 in adipose tissue. These findings suggest that the signaling cross-talk between saturated fatty acid palmitate and TNF-α may be a key driver in obesity-associated chronic inflammation via an excessive production of IL-8.


Assuntos
Inflamação/metabolismo , Interleucina-8/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Palmitatos/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Linhagem Celular , Humanos , Pessoa de Meia-Idade , Sobrepeso/metabolismo , Transdução de Sinais
12.
Cell Physiol Biochem ; 46(3): 953-964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669317

RESUMO

BACKGROUND/AIMS: Obesity is associated with adipose tissue inflammation which plays a key role in the development of insulin resistance and type 2 diabetes (T2D). Saturated free fatty acids (SFAs) levels are found to be elevated in obesity and T2D. Chemokines are known to have potent inflammatory functions in a wide range of biological processes linked to immunological disorders. Since CCL4 (Chemokine (C-C motif) ligand 4), also known as macrophage inflammatory protein-1ß (MIP-1ß), plays an important role in the migration of monocytes into the adipose tissue, we investigated the expression of CCL4 in monocytic cells/macrophages following activation with free fatty acid palmitate. METHODS: Human monocytic cell line THP-1 and macrophages derived from THP-1 and primary monocytes were stimulated with palmitate and LPS (positive control). CCL4 expression and secretion were measured with real time RT-PCR and ELISA respectively. Signaling pathways were identified by using THP-1-XBlueTM cells, THP-1-XBlueTM-defMyD cells, anti-TLR4 mAb and TLR4 siRNA. RESULTS: Palmitate induces CCL4 expression at both mRNA and protein levels in human monocytic cells. Palmitate-induced CCL4 production was markedly suppressed by neutralizing anti-TLR-4 antibody. Additionally, silencing of TLR4 by siRNA also significantly suppressed the palmitate-induced up-regulation of CCL4. MyD88-deficient cells did not express CCL4 in response to palmitate treatment. Inhibition of NF-kB and MAPK pathways suppressed the palmitate mediated induction of CCL4. Moreover, induction of CCL4 was blocked by PI3 Kinase inhibitors LY294002 and wortmannin. CONCLUSION: Collectively, our results show that palmitate induces CCL4 expression via activation of the TLR4-MyD88/NF-kB/MAPK/ PI3K signaling cascade. Thus, our findings suggest that the palmitate-induced CCL4 production might be an underlying mechanism of metabolic inflammation.


Assuntos
Quimiocina CCL4/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Palmitatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Anticorpos Neutralizantes/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL4/genética , Cromonas/farmacologia , Humanos , Leucemia/metabolismo , Leucemia/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Transcrição AP-1/metabolismo
13.
Cell Physiol Biochem ; 45(2): 572-590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29428931

RESUMO

BACKGROUND/AIMS: Metabolic diseases such as obesity and type-2 diabetes (T2D) are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR) such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. METHODS: TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC), or primary monocytes were treated with hydrogen peroxide (H2O2) for induction of reactive oxygen species (ROS)-mediated oxidative stress. Superoxide dismutase (SOD) activity was measured using a commercial kit. Data (mean±SEM) were compared using unpaired student's t-test and P<0.05 was considered significant. RESULTS: The adipose tissue TLR10 gene/protein expression was found to be significantly upregulated in obesity as well as T2D which correlated with body mass index (BMI). ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB)/mitogen activated protein kinase (MAPK) signaling as well as endoplasmic reticulum (ER) stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. CONCLUSION: Oxidative stress induces the expression of TLR10 which may represent an immune marker for metabolic inflammation.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Obesidade/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptor 10 Toll-Like/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Peróxido de Hidrogênio/toxicidade , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor 10 Toll-Like/metabolismo
14.
Cell Physiol Biochem ; 41(5): 1993-2003, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419983

RESUMO

BACKGROUND: Matrix metalloproteinase (MMP)-9 is known to degrade the extracellular matrix and increased MMP-9 levels are related with the pathogenesis of many inflammatory conditions including obesity. Pam3CSK4 is a synthetic triacylated lipopeptide (LP) which is a potent activator of immune cells and induces cytokine production. However, it is unclear whether Pam3CSK4 is able to induce MMP-9 expression in monocytic cells. We, therefore, determined MMP-9 production by Pam3CSK4-treated THP-1 cells and also investigated the signal transduction pathway(s) involved. METHODS: MMP-9 expression was determined by real-time qPCR and ELISA. MMP-9 activity was assessed by zymography. THP-1 cells, THP1-XBlueTM cells, THP1-XBlueTM-defMyD cells, anti-TLR2 mAb and selective pharmacological inhibitors were used to study signaling pathways involved. Phosphorylated and total proteins were detected by western blotting. RESULTS: Pam3CSK4 induced MMP-9 expression (P<0.05) at both mRNA and protein levels in human monocytic THP-1 cells. Increased NF-κB/AP-1 activity was detected in Pam3CSK4-treated THP-1 cells and MMP-9 production in these cells was significantly suppressed by pre-treatment with anti-TLR2 neutralizing antibody or by inhibition of clathrin-dependent endocytosis. Also, MyD88-/- THP-1 cells did not express MMP-9 following treatment with Pam3CSK4. Inhibition of JNK, MEK/ERK, p38 MAPK and NF-κB significantly suppressed MMP-9 gene expression (P<0.05). CONCLUSION: Pam3CSK4 induces MMP-9 production in THP-1 cells through the TLR-2/MyD88-dependent mechanism involving MEK/ERK, JNK, p38 MAPK and NF-κB/AP-1 activation.


Assuntos
Lipopeptídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/biossíntese , Monócitos/enzimologia , Linhagem Celular Tumoral , Indução Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Metaloproteinase 9 da Matriz/genética , NF-kappa B/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
15.
Front Immunol ; 15: 1430187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351229

RESUMO

Increased MMP-9 expression in the tumor microenvironment (TME) plays a crucial role in the extracellular matrix remodeling to facilitate cancer invasion and metastasis. However, the mechanism of MMP-9 upregulation in TME remains elusive. Since TGF-ß and TNF-α levels are elevated in TME, we asked whether these two agents interacted to induce/augment MMP-9 expression. Using a well-established MDA-MB-231 breast cancer model, we found that the synergy between TGF-ß and TNF-α led to MMP-9 upregulation at the transcriptional and translational levels, compared to treatments with each agent alone. Our in vitro findings are corroborated by co-expression of elevated MMP-9 with TGF-ß and TNF-α in human breast cancer tissues. Mechanistically, we found that the MMP-9 upregulation driven by TGF-ß/TNF-α cooperativity was attenuated by selective inhibition of the TGF-ßRI/Smad3 pathway. Comparable outcomes were observed upon inhibition of TGF-ß-induced phosphorylation of Smad2/3 and p38. As expected, the cells defective in Smad2/3 or p38-mediated signaling did not exhibit this synergistic induction of MMP-9. Importantly, the inhibition of histone methylation but not acetylation dampened the synergistic MMP-9 expression. Histone modification profiling further identified the H3K36me2 as an epigenetic regulatory mark of this synergy. Moreover, TGF-ß/TNF-α co-stimulation led to increased levels of the transcriptionally permissive dimethylation mark at H3K36 in the MMP-9 promoter. Comparable outcomes were noted in cells deficient in NSD2 histone methyltransferase. In conclusion, our findings support a cooperativity model in which TGF-ß could amplify the TNF-α-mediated MMP-9 production via chromatin remodeling and facilitate breast cancer invasion and metastasis.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz , Metástase Neoplásica , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Fator de Necrose Tumoral alfa/metabolismo , Feminino , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Metilação , Transdução de Sinais , Microambiente Tumoral
16.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065674

RESUMO

CXCL10 (IP-10) plays a key role in leukocyte homing to the inflamed tissues and its increased levels are associated with the pathophysiology of various inflammatory diseases including obesity and type 2 diabetes. IL-1ß is a key proinflammatory cytokine that is found upregulated in meta-inflammatory conditions and acts as a potent activator, inducing the expression of cytokines/chemokines by immune cells. However, it is unclear whether IL-1ß induces the expression of CXCL10 in monocytic cells. We, therefore, determined the CXCL10 induction using IL-1ß in THP1 monocytic cells and investigated the mechanisms involved. Monocytes (human monocytic THP-1 cells) were stimulated with IL-1ß. CXCL10 gene expression was determined with real-time RT-PCR. CXCL10 protein was determined using ELISA. Signaling pathways were identified by using Western blotting, inhibitors, siRNA transfections, and kinase assay. Our data show that IL-1ß induced the CXCL10 expression at both mRNA and protein levels in monocytic cells (p = 0.0001). Notably, only the JNK inhibitor (SP600125) significantly suppressed the IL-1ß-induced CXCL10 expression, while the inhibitors of MEK1/2 (U0126), ERK1/2 (PD98059), and p38 MAPK (SB203580) had no significant effect. Furthermore, IL-1ß-induced CXCL10 expression was decreased in monocytic cells deficient in JNK/c-Jun. Accordingly, inhibiting the JNK kinase activity markedly reduced the IL-1ß-induced JNK/c-Jun phosphorylation in monocytic cells. NF-κB inhibition by Bay-117085 and resveratrol also suppressed the CXCL10 expression. Our findings provide preliminary evidence that IL-1ß stimulation induces the expression of CXCL10 in monocytic cells which requires signaling via the JNK/c-Jun/NF-κB axis.

17.
Front Endocrinol (Lausanne) ; 15: 1265799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414818

RESUMO

Introduction: A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. Methods: C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. Results and discussion: Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas ß-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.


Assuntos
Gorduras na Dieta , Ilhotas Pancreáticas , Leptina , Masculino , Camundongos , Animais , Glucagon , Sacarose/efeitos adversos , Óleos de Peixe/farmacologia , Peptídeo C , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Insulina , Glucose , Peptídeo 1 Semelhante ao Glucagon/metabolismo
18.
Nutrients ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931284

RESUMO

BACKGROUND: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). RESULTS: C57BL/6 mice (5-6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (ß-(hydroxy ß-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. CONCLUSION: These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance.


Assuntos
Dieta Hiperlipídica , Disbiose , Microbioma Gastrointestinal , Resistência à Insulina , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sacarose/efeitos adversos
19.
Front Microbiol ; 15: 1407258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165573

RESUMO

High-fat diets (HFDs) shape the gut microbiome and promote obesity, inflammation, and liver steatosis. Fish and soybean are part of a healthy diet; however, the impact of these fats, in the absence of sucrose, on gut microbial dysbiosis and its association with liver steatosis remains unclear. Here, we investigated the effect of sucrose-free soybean oil-and fish oil-based high fat diets (HFDs) (SF-Soy-HFD and SF-Fish-HFD, respectively) on gut dysbiosis, obesity, steatosis, hepatic inflammation, and insulin resistance. C57BL/6 mice were fed these HFDs for 24 weeks. Both diets had comparable effects on liver and total body weights. But 16S-rRNA sequencing of the gut content revealed induction of gut dysbiosis at different taxonomic levels. The microbial communities were clearly separated, showing differential dysbiosis between the two HFDs. Compared with the SF-Fish-HFD control group, the SF-Soy-HFD group had an increased abundance of Bacteroidetes, Firmicutes, and Deferribacteres, but a lower abundance of Verrucomicrobia. The Clostridia/Bacteroidia (C/B) ratio was higher in the SF-Soy-HFD group (3.11) than in the SF-Fish-HFD group (2.5). Conversely, the Verrucomicrobiacae/S24_7 (also known as Muribaculaceae family) ratio was lower in the SF-Soy-HFD group (0.02) than that in the SF-Fish-HFD group (0.75). The SF-Soy-HFD group had a positive association with S24_7, Clostridiales, Allobaculum, Coriobacteriaceae, Adlercreutzia, Christensenellaceae, Lactococcus, and Oscillospira, but was related to a lower abundance of Akkermansia, which maintains gut barrier integrity. The gut microbiota in the SF-Soy-HFD group had predicted associations with host genes related to fatty liver and inflammatory pathways. Mice fed the SF-Soy-HFD developed liver steatosis and showed increased transcript levels of genes associated with de novo lipogenesis (Acaca, Fasn, Scd1, Elovl6) and cholesterol synthesis (Hmgcr) pathways compared to those in the SF-Fish-HFD-group. No differences were observed in the expression of fat uptake genes (Cd36 and Fabp1). The expression of the fat efflux gene (Mttp) was reduced in the SF-Soy-HFD group. Moreover, hepatic inflammation markers (Tnfa and Il1b) were notably expressed in SF-Soy-HFD-fed mice. In conclusion, SF-Soy-HFD feeding induced gut dysbiosis in mice, leading to steatosis, hepatic inflammation, and impaired glucose homeostasis.

20.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891081

RESUMO

This study unveils verapamil's compelling cytoprotective and proliferative effects on pancreatic ß-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 ß-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil's capacity to significantly boost ß-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil's induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for ß-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil's efficacy in fostering ß-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil's reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing ß-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of ß-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting ß-cell functionality.


Assuntos
Colecistocinina , Células Secretoras de Insulina , Verapamil , Peixe-Zebra , Animais , Camundongos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Modelos Animais de Doenças , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA