Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046038

RESUMO

An optical antenna can convert a propagative optical radiation into a localized excitation and the reciprocal. Although optical antennas can be readily created using resonant nanoparticles (metallic or dielectric) as elementary building blocks, the realization of antennas sustaining multiple resonances over a broad range of frequencies remains a challenging task. Here, we use aluminum self-similar, fractal-like structures as broadband optical antennas. Using electron energy loss spectroscopy, we experimentally evidence that a single aluminum Cayley tree, a simple self-similar structure, sustains multiple plasmonic resonances. The spectral position of these resonances is scalable over a broad spectral range spanning two decades, from ultraviolet to midinfrared. Such multiresonant structures are highly desirable for applications ranging from nonlinear optics to light harvesting and photodetection, as well as surface-enhanced infrared absorption spectroscopy.

2.
Nano Lett ; 24(12): 3678-3685, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471109

RESUMO

Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.

3.
Nano Lett ; 22(1): 319-327, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907775

RESUMO

Whispering-gallery mode resonators host multiple trapped narrow-band circulating optical resonances that find applications in quantum electrodynamics, optomechanics, and sensing. However, the spherical symmetry and low field leakage of dielectric microspheres make it difficult to probe their high-quality optical modes using far-field radiation. Even so, local field enhancement from metallic nanoparticles (MNPs) coupled to the resonators can interface the optical far field and the bounded cavity modes. In this work, we study the interaction between whispering-gallery modes and MNP surface plasmons with nanometric spatial resolution by using electron-beam spectroscopy with a scanning transmission electron microscope. We show that gallery modes are induced over a selective spectral range of the nanoparticle plasmons, and additionally, their polarization can be controlled by the induced dipole moment of the MNP. Our study demonstrates a viable mechanism to effectively excite high-quality-factor whispering-gallery modes and holds potential for applications in optical sensing and light manipulation.

4.
Nano Lett ; 21(24): 10178-10185, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878799

RESUMO

Structural, electronic, and chemical nanoscale modifications of transition metal dichalcogenide monolayers alter their optical properties. A key missing element for complete control is a direct spatial correlation of optical response to nanoscale modifications due to the large gap in spatial resolution between optical spectroscopy and nanometer-resolved techniques. Here, we bridge this gap by obtaining nanometer-resolved optical properties using electron spectroscopy at cryogenic temperatures, specifically electron energy loss spectroscopy for absorption and cathodoluminescence for emission, which are then directly correlated to chemical and structural information. In an h-BN/WS2/h-BN heterostructure, we observe local modulation of the trion (X-) emission due to tens of nanometer wide dielectric patches. Trion emission also increases in regions where charge accumulation occurs, close to the carbon film supporting the heterostructures. The localized exciton emission (L) detected here is not correlated to strain above 1%, suggesting point defects might be involved in their formation.

5.
Nano Lett ; 21(6): 2444-2452, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33651617

RESUMO

Silver, king among plasmonic materials, features low inelastic absorption in the visible-infrared (vis-IR) spectral region compared to other metals. In contrast, copper is commonly regarded as too lossy for actual applications. Here, we demonstrate vis-IR plasmons with quality factors >60 in long copper nanowires (NWs), as determined by electron energy-loss spectroscopy. We explain this result by noticing that most of the electromagnetic energy in these plasmons lies outside the metal, thus becoming less sensitive to inelastic absorption. Measurements for silver and copper NWs of different diameters allow us to elucidate the relative importance of radiative and nonradiative losses in plasmons spanning a wide spectral range down to <20 meV. Thermal population of such low-energy modes becomes significant and generates electron energy gains associated with plasmon absorption, rendering an experimental determination of the NW temperature. Copper is therefore emerging as an attractive, cheap, abundant material platform for high-quality plasmonics in elongated nanostructures.

6.
Nano Lett ; 20(1): 509-516, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31816242

RESUMO

When circularly polarized light interacts with a nanostructure, the optical response depends on the geometry of the structure. If the nanostructure is chiral (i.e., it cannot be superimposed on its mirror image), then its optical response, both in near-field and far-field, depends on the handedness of the incident light. In contrast, achiral structures exhibit identical far-field responses for left- and right-circular polarization. Here, we show that a perfectly achiral nanostructure, a plasmonic metamolecule with trigonal D3h symmetry, exhibits a near-field response that is sensitive to the handedness of light. This effect stems from the near-field interference between the different plasmonic modes sustained by the plasmonic metamolecule under circularly polarized light excitation. The local chirality in a plasmonic trimer is then experimentally evidenced with nanoscale resolution using a molecular probe. Our experiments demonstrate that the optical near-field chirality can be imprinted into the photosensitive polymer, turning an optical chirality into a geometrical chirality that can be imaged using atomic force microscopy. These results are of interest for the field of polarization-sensitive photochemistry.

7.
Nano Lett ; 20(5): 2973-2979, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31967839

RESUMO

Atomic vibrations and phonons are an excellent source of information on nanomaterials that we can access through a variety of methods including Raman scattering, infrared spectroscopy, and electron energy-loss spectroscopy (EELS). In the presence of a plasmon local field, vibrations are strongly modified and, in particular, their dipolar strengths are highly enhanced, thus rendering Raman scattering and infrared spectroscopy extremely sensitive techniques. Here, we experimentally demonstrate that the interaction between a relativistic electron and vibrational modes in nanostructures is fundamentally modified in the presence of plasmons. We finely tune the energy of surface plasmons in metallic nanowires in the vicinity of hexagonal boron nitride, making it possible to monitor and disentangle both strong phonon-plasmon coupling and plasmon-driven phonon enhancement at the nanometer scale. Because of the near-field character of the electron beam-phonon interaction, optically inactive phonon modes are also observed. Besides increasing our understanding of phonon physics, our results hold great potential for investigating sensing mechanisms and chemistry in complex nanomaterials down to the molecular level.

8.
Nat Mater ; 18(11): 1158-1171, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31308514

RESUMO

Progress in electron-beam spectroscopies has recently enabled the study of optical excitations with combined space, energy and time resolution in the nanometre, millielectronvolt and femtosecond domain, thus providing unique access into nanophotonic structures and their detailed optical responses. These techniques rely on ~1-300 keV electron beams focused at the sample down to sub-nanometre spots, temporally compressed in wavepackets a few femtoseconds long, and in some cases controlled by ultrafast light pulses. The electrons undergo energy losses and gains (also giving rise to cathodoluminescence light emission), which are recorded to reveal the optical landscape along the beam path. This Review portraits these advances, with a focus on coherent excitations, emphasizing the increasing level of control over the electron wavefunctions and ensuing applications in the study and technological use of optically resonant modes and polaritons in nanoparticles, 2D materials and engineered nanostructures.

9.
Philos Trans A Math Phys Eng Sci ; 378(2186): 20190599, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33100159

RESUMO

Conical metallic tapers represent an intriguing subclass of metallic nanostructures, as their plasmonic properties show interesting characteristics in strong correlation to their geometrical properties. This is important for possible applications such as in the field of scanning optical microscopy, as favourable plasmonic resonance behaviour can be tailored by optimizing structural parameters like surface roughness or opening angle. Here, we review our recent studies, where single-crystalline gold tapers were investigated experimentally by means of electron energy-loss and cathodoluminescence spectroscopy techniques inside electron microscopes, supported by theoretical finite-difference time-domain calculations. Through the study of tapers with various opening angles, the underlying resonance mechanisms are discussed. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.

10.
Nano Lett ; 19(11): 8171-8181, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31639311

RESUMO

Polaritons are compositional light-matter quasiparticles that have enabled remarkable breakthroughs in quantum and nonlinear optics, as well as in material science. Recently, plasmon-exciton polaritons (plexcitons) have been realized in hybrid material systems composed of transition metal dichalcogenide (TMDC) materials and metal nanoparticles, expanding polaritonic concepts to room temperature and nanoscale systems that also benefit from the exotic properties of TMDC materials. Despite the enormous progress in understanding TMDC-based plexcitons using optical-based methods, experimental evidence of plexcitons formation has remained indirect and mapping their nanometer-scale characteristics has remained an open challenge. Here, we demonstrate that plexcitons generated by a hybrid system composed of an individual silver nanoparticle and a few-layer WS2 flake can be spectroscopically mapped with nanometer spatial resolution using electron energy loss spectroscopy in a scanning transmission electron microscope. Experimental anticrossing measurements using the absorption-dominated extinction signal provide the ultimate evidence for plexciton hybridization in the strong coupling regime. Spatially resolved EELS maps reveal the existence of unexpected nanoscale variations in the deep-subwavelength nature of plexcitons generated by this system. These findings pioneer new possibilities for in-depth studies of the local atomic structure dependence of polariton-related phenomena in TMDC hybrid material systems with nanometer spatial resolution.

11.
Angew Chem Int Ed Engl ; 59(23): 9113-9119, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32134154

RESUMO

The first colour photographs were created by a process introduced by Edmond Becquerel in 1848. The nature of these photochromatic images colours motivated a debate between scientists during the XIXth century, which is still not settled. We present the results of chemical analysis (EDX, HAXPES and EXAFS) and morphology studies (SEM, STEM) aiming at explaining the optical properties of the photochromatic images (UV-visible spectroscopy and low loss EELS). We rule out the two hypotheses (pigment and interferences) that have prevailed since 1848, respectively based on variations in the oxidation degree of the compound forming the sensitized layer and periodically spaced photolytic silver planes. A study of the silver nanoparticles dispersions contained in the coloured layers showed specific localizations and sizes distributions of the nanoparticles for each colour. These results allow us to formulate a plasmonic hypothesis on the origin of the photochromatic images colours.

14.
Nano Lett ; 16(7): 4317-21, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27299915

RESUMO

To date, quantum sources in the ultraviolet (UV) spectral region have been obtained only in semiconductor quantum dots. Color centers in wide bandgap materials may represent a more effective alternative. However, the quest for UV quantum emitters in bulk crystals faces the difficulty of combining an efficient UV excitation/detection optical setup with the capability of addressing individual color centers in potentially highly defective materials. In this work we overcome this limit by employing an original experimental setup coupling cathodoluminescence within a scanning transmission electron microscope to a Hanbury-Brown-Twiss intensity interferometer. We identify a new extremely bright UV single photon emitter (4.1 eV) in hexagonal boron nitride. Hyperspectral cathodoluminescence maps show a high spatial localization of the emission (∼80 nm) and a typical zero-phonon line plus phonon replica spectroscopic signature, indicating a point defect origin, most likely carbon substitutional at nitrogen sites. An additional nonsingle-photon broad emission may appear in the same spectral region, which can be attributed to intrinsic defects related to electron irradiation.

15.
Nanotechnology ; 27(19): 195704, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27041669

RESUMO

The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nano-cathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 °C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.

16.
Nature ; 521(7551): 166-7, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971506
17.
Nano Lett ; 15(8): 5427-37, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26134470

RESUMO

Inspired by the concept of living polymerization reaction, we are able to produce silver-gold-silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes.


Assuntos
Ouro/química , Nanotecnologia/métodos , Nanofios/química , Prata/química , Nanofios/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos
18.
Nano Lett ; 15(2): 1229-37, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25603194

RESUMO

Plasmon modes of the exact same individual gold nanoprisms are investigated through combined nanometer-resolved electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) measurements. We show that CL only probes the radiative modes, in contrast to EELS, which additionally reveals dark modes. The combination of both techniques on the same particles thus provides complementary information and also demonstrates that although the radiative modes give rise to very similar spatial distributions when probed by EELS or CL, their resonant energies appear to be different. We trace this phenomenon back to plasmon dissipation, which affects in different ways the plasmon signatures probed by these techniques. Our experiments are in agreement with electromagnetic numerical simulations and can be further interpreted within the framework of a quasistatic analytical model. We therefore demonstrate that CL and EELS are closely related to optical scattering and extinction, respectively, with the addition of nanometer spatial resolution.

19.
Chem Soc Rev ; 43(11): 3865-83, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24604161

RESUMO

In this tutorial review, we present the use of electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) spectroscopy for surface plasmon mapping within metallic nanoparticles. We put a special emphasis on particles that are much smaller than the wavelength of visible light. We start by introducing the concept of surface plasmons, keeping the formalism as simple as possible by focusing on the quasi-static approximation. We then make a link between optical cross-sections, EELS and CL probabilities, and the surface plasmons' physical properties. A short survey of simulation tools is given. We then present typical experimental set-ups and describe some problems frequently encountered with spectrometers. Experimental conditions for improved signal to noise ratio are discussed. Analysis techniques are discussed, especially those related to the spectral imaging mode, which is extremely useful in EELS and CL experiments. Finally, the specific range of applications of EELS and CL with respect to other nano-optic techniques is discussed, as well as the strengths and weaknesses of EELS as compared with CL.

20.
Nano Lett ; 14(10): 5517-23, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207386

RESUMO

We report on the high resolution imaging of multipolar plasmonic resonances in aluminum nanoantennas using electron energy loss spectroscopy (EELS). Plasmonic resonances ranging from near-infrared to ultraviolet (UV) are measured. The spatial distributions of the multipolar resonant modes are mapped and their energy dispersion is retrieved. The losses in the aluminum antennas are studied through the full width at half-maximum of the resonances, unveiling the weight of both interband and radiative damping mechanisms of the different multipolar resonances. In the blue-UV spectral range, high order resonant modes present a quality factor up to 8, two times higher than low order resonant modes at the same energy. This study demonstrates that near-infrared to ultraviolet tunable multipolar plasmonic resonances in aluminum nanoantennas with relatively high quality factors can be engineered. Aluminum nanoantennas are thus an appealing alternative to gold or silver ones in the visible and can be efficiently used for UV plasmonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA