Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 25(13): e202400201, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701360

RESUMO

Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.


Assuntos
Escherichia coli , Peptídeo 1 Semelhante ao Glucagon , Peptídeo 2 Semelhante ao Glucagon , Escherichia coli/enzimologia , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 2 Semelhante ao Glucagon/química , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos
2.
Angew Chem Int Ed Engl ; 58(27): 9068-9072, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995340

RESUMO

The development of methods for conjugation of DNA to proteins is of high relevance for the integration of protein function and DNA structures. Here, we demonstrate that protein-binding peptides can direct a DNA-templated reaction, selectively furnishing DNA-protein conjugates with one DNA label. Quantitative conversion of oligonucleotides is achieved at low stoichiometries and the reaction can be performed in complex biological matrixes, such as cell lysates. Further, we have used a star-like pentameric DNA nanostructure to assemble five DNA-Rituximab conjugates, made by our reported method, into a pseudo-IgM antibody structure that was subsequently characterized by negative-stain transmission electron microscopy (nsTEM) analysis.


Assuntos
DNA/química , Imunoglobulina M/química , Peptídeos/química , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Imunoglobulina M/metabolismo , Microscopia Eletrônica de Transmissão , Peptídeos/metabolismo , Ligação Proteica , Rituximab/química , Rituximab/metabolismo
3.
Small ; 12(19): 2634-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27032044

RESUMO

DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface.


Assuntos
DNA/química , DNA/farmacocinética , Nanocápsulas/química , Neoplasias Experimentais/metabolismo , Receptores da Transferrina/metabolismo , Linhagem Celular Tumoral , Cristalização/métodos , Humanos , Redes e Vias Metabólicas/fisiologia , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/química , Tamanho da Partícula , Receptores da Transferrina/química , Frações Subcelulares/química , Frações Subcelulares/metabolismo
4.
Chembiochem ; 17(14): 1338-42, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27168316

RESUMO

Many medical and biotechnological applications rely on protein labeling, but a key challenge is the production of homogeneous and site-specific conjugates. This can rarely be achieved by simple residue-specific random labeling, but generally requires genetic engineering. Using site-selective DNA-templated reductive amination, we created DNA-protein conjugates with control over labeling stoichiometry and without genetic engineering. A guiding DNA strand with a metal-binding functionality facilitates site-selectivity by directing the coupling of a second reactive DNA strand in the vicinity of a protein metal-binding site. We demonstrate DNA-templated reductive amination for His6 -tagged proteins and metal-binding proteins, including IgG1 antibodies. We also used a cleavable linker between the DNA and the protein to remove the DNA and introduce a single aldehyde on the protein. This functions as a handle for further modifications with desired labels. In addition to directing the aldehyde positioning, the DNA provides a straightforward route for purification between reaction steps.


Assuntos
Aldeídos/química , DNA/química , Proteínas/química , Aminação , Sítios de Ligação , Reagentes de Ligações Cruzadas , Metais
5.
ACS Nano ; 15(6): 9404-9411, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33938214

RESUMO

Nanoscale transport of light through single molecule systems is of fundamental importance for light harvesting, nanophotonic circuits, and for understanding photosynthesis. Studies on organization of molecular entities for directional transfer of excitation energy have focused on energy transfer cascades via multiple small molecule dyes. Here, we investigate a single molecule conjugated polymer as a photonic wire. The phenylene-vinylene-based polymer is functionalized with multiple DNA strands and immobilized on DNA origami by hybridization to a track of single-stranded staples extending from the origami structure. Donor and acceptor fluorophores are placed at specific positions along the polymer which enables energy transfer from donor to polymer, through the polymer, and from polymer to acceptor. The structure is characterized by atomic force microscopy, and the energy transfer is studied by ensemble fluorescence spectroscopy and single molecule TIRF microscopy. It is found that the polymer photonic wire is capable of transferring light over distances of 24 nm. This demonstrates the potential residing in the use of conjugated polymers for nanophotonics.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanotecnologia , Fótons , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA