Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2219404120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276413

RESUMO

Nogo-66 receptor 1 (NgR1) binds a variety of structurally dissimilar ligands in the adult central nervous system to inhibit axon extension. Disruption of ligand binding to NgR1 and subsequent signaling can improve neuron outgrowth, making NgR1 an important therapeutic target for diverse neurological conditions such as spinal crush injuries and Alzheimer's disease. Human NgR1 serves as a receptor for mammalian orthoreovirus (reovirus), but the mechanism of virus-receptor engagement is unknown. To elucidate how NgR1 mediates cell binding and entry of reovirus, we defined the affinity of interaction between virus and receptor, determined the structure of the virus-receptor complex, and identified residues in the receptor required for virus binding and infection. These studies revealed that central NgR1 surfaces form a bridge between two copies of viral capsid protein σ3, establishing that σ3 serves as a receptor ligand for reovirus. This unusual binding interface produces high-avidity interactions between virus and receptor to prime early entry steps. These studies refine models of reovirus cell-attachment and highlight the evolution of viruses to engage multiple receptors using distinct capsid components.


Assuntos
Orthoreovirus , Reoviridae , Animais , Humanos , Receptor Nogo 1/metabolismo , Ligação Viral , Proteínas Virais/metabolismo , Ligantes , Reoviridae/metabolismo , Orthoreovirus/metabolismo , Receptores Virais/metabolismo , Mamíferos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(21): e2220741120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186838

RESUMO

Mammalian orthoreoviruses (reoviruses) serve as potential triggers of celiac disease and have oncolytic properties, making these viruses potential cancer therapeutics. Primary attachment of reovirus to host cells is mainly mediated by the trimeric viral protein, σ1, which engages cell-surface glycans, followed by high-affinity binding to junctional adhesion molecule-A (JAM-A). This multistep process is thought to be accompanied by major conformational changes in σ1, but direct evidence is lacking. By combining biophysical, molecular, and simulation approaches, we define how viral capsid protein mechanics influence virus-binding capacity and infectivity. Single-virus force spectroscopy experiments corroborated by in silico simulations show that GM2 increases the affinity of σ1 for JAM-A by providing a more stable contact interface. We demonstrate that conformational changes in σ1 that lead to an extended rigid conformation also significantly increase avidity for JAM-A. Although its associated lower flexibility impairs multivalent cell attachment, our findings suggest that diminished σ1 flexibility enhances infectivity, indicating that fine-tuning of σ1 conformational changes is required to successfully initiate infection. Understanding properties underlying the nanomechanics of viral attachment proteins offers perspectives in the development of antiviral drugs and improved oncolytic vectors.


Assuntos
Orthoreovirus , Reoviridae , Animais , Proteínas do Capsídeo/química , Reoviridae/metabolismo , Orthoreovirus/metabolismo , Proteínas Virais/metabolismo , Ligação Viral , Anticorpos Antivirais , Mamíferos/metabolismo
3.
Nano Lett ; 23(4): 1496-1504, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758952

RESUMO

Despite intense scrutiny throughout the pandemic, development of efficacious drugs against SARS-CoV-2 spread remains hindered. Understanding the underlying mechanisms of viral infection is fundamental for developing novel treatments. While angiotensin converting enzyme 2 (ACE2) is accepted as the key entry receptor of the virus, other infection mechanisms exist. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and its counterpart DC-SIGN-related (DC-SIGNR, also known as L-SIGN) have been recognized as possessing functional roles in COVID-19 disease and binding to SARS-CoV-2 has been demonstrated previously with ensemble and qualitative techniques. Here we examine the thermodynamic and kinetic parameters of the ligand-receptor interaction between these C-type lectins and the SARS-CoV-2 S1 protein using force-distance curve-based AFM and biolayer interferometry. We evidence that the S1 receptor binding domain is likely involved in this bond formation. Further, we employed deglycosidases and examined a nonglycosylated S1 variant to confirm the significance of glycosylation in this interaction. We demonstrate that the high affinity interactions observed occur through a mechanism distinct from that of ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Ligação Proteica
4.
J Struct Biol ; 215(2): 107963, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37044358

RESUMO

The application of atomic force microscopy (AFM) for functional imaging and manipulating biomolecules at all levels of organization has enabled great progress in the structural biology field over the last decades, contributing to the discovery of novel structural entities of biological significance across many disciplines ranging from biochemistry, biomedicine and biophysics to molecular and cell biology, up to food systems and beyond. AFM has the capability to generate high-resolution topographic images spanning from the submolecular to the (sub)cellular range and can probe biochemical and biophysical sample properties in close to native conditions with excellent temporal resolution. Instrumental developments in the past decade enable dynamical structural and conformational studies of single biomolecules and new techniques for structural and chemical modification of the AFM probe have converted the cantilever into a versatile tool to study different biological phenomena, such as the mechanical stability of biomolecular complexes or the force induced dynamic changes of mechanically stressed proteins at the nanoscopic level. To improve the functionality of AFM and approach dynamic processes of complex biological systems ex vivo, AFM is combined with complementary microscopy, nanoscopy and spectroscopy tools. These multimethodological approaches provide unprecedented possibilities of probing physical, chemical and biological properties of complex cellular systems with high spatio-temporal resolution, leading to novel applications that correlate structural results with functional biochemical, biophysical, immunological, or genetic data of the system under study.


Assuntos
Biologia , Fenômenos Mecânicos , Microscopia de Força Atômica/métodos
5.
Nano Lett ; 22(4): 1641-1648, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35108019

RESUMO

Ebola virus (EBOV) is responsible for several outbreaks of hemorrhagic fever with high mortality, raising great public concern. Several cell surface receptors have been identified to mediate EBOV binding and internalization, including phosphatidylserine (PS) receptors (TIM-1) and C-type lectin receptors (DC-SIGNR). However, the role of TIM-1 during early cell surface binding remains elusive and in particular whether TIM-1 acts as a specific receptor for EBOV. Here, we used force-distance curve-based atomic force microscopy (FD-based AFM) to quantify the binding between TIM-1/DC-SIGNR and EBOV glycoprotein (GP) and observed that both receptors specifically bind to GP with high-affinity. Since TIM-1 can also directly interact with PS at the single-molecule level, we also confirmed that TIM-1 acts as dual-function receptors of EBOV. These results highlight the direct involvement of multiple high-affinity receptors in the first steps of binding to cell surfaces, thus offering new perspectives for the development of anti-EBOV therapeutic molecules.


Assuntos
Ebolavirus , Ebolavirus/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Ligação Viral
6.
Nano Lett ; 21(22): 9720-9728, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762801

RESUMO

Breast cancer is the most common cancer in women. Although current therapies have increased survival rates for some breast cancer types, other aggressive invasive breast cancers remain difficult to treat. As the onset of breast cancer is often associated with the appearance of extracellular markers, these could be used to better target therapeutic agents. Here, we demonstrated by nanobiophysical approaches that overexpression of α-sialylated glycans in breast cancer provides an opportunity to combat cancer cells with oncolytic reoviruses. Notably, a correlation between cellular glycan expression and the mechanical properties of reovirus attachment and infection is observed in a serotype-dependent manner. Furthermore, we enhance the infectivity of reoviruses in malignant cells by the coinjection of α-sialylated glycans. In conclusion, this study supports both the use of reoviruses as an oncolytic agent in nanomedicine and the role of α-sialylated glycans as adjuvants in oncolysis, offering new perspective in oncolytic cancer therapy.


Assuntos
Neoplasias da Mama , Reoviridae , Neoplasias da Mama/terapia , Feminino , Humanos , Polissacarídeos
7.
Nano Lett ; 21(12): 4950-4958, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34125553

RESUMO

PIEZO1 ion channels are activated by mechanical stimuli, triggering intracellular chemical signals. Recent structural studies suggest that plasma membrane tension or local curvature changes modulate PIEZO1 channel gating and activation. However, whether PIEZO1 localization is governed by tension gradients or long-range mechanical perturbations across the cells is still unclear. Here, we probe the nanoscale localization of PIEZO1 on red blood cells (RBCs) at high resolution (∼30 nm), and we report for the first time the existence of submicrometric PIEZO1 clusters in native conditions. Upon interaction with Yoda1, an allosteric modulator, PIEZO1 clusters increase in abundance in regions of higher membrane tension and lower curvature. We further show that PIEZO1 ion channels interact with the spectrin cytoskeleton in both resting and activated states. Our results point toward a strong interplay between plasma membrane tension gradients, curvature, and cytoskeleton association of PIEZO1.


Assuntos
Canais Iônicos , Fenômenos Mecânicos , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Microscopia Confocal
8.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938765

RESUMO

Reovirus attachment protein σ1 is a trimeric molecule containing tail, body, and head domains. During infection, σ1 engages sialylated glycans and junctional adhesion molecule-A (JAM-A), triggering uptake into the endocytic compartment, where virions are proteolytically converted to infectious subvirion particles (ISVPs). Further disassembly allows σ1 release and escape of transcriptionally active reovirus cores into the cytosol. Electron microscopy has revealed a distinct conformational change in σ1 from a compact form on virions to an extended form on ISVPs. To determine the importance of σ1 conformational mobility, we used reverse genetics to introduce cysteine mutations that can cross-link σ1 by establishing disulfide bonds between structurally adjacent sites in the tail, body, and head domains. We detected phenotypic differences among the engineered viruses. A mutant with a cysteine pair in the head domain replicates with enhanced kinetics, forms large plaques, and displays increased avidity for JAM-A relative to the parental virus, mimicking properties of ISVPs. However, unlike ISVPs, particles containing cysteine mutations that cross-link the head domain uncoat and transcribe viral positive-sense RNA with kinetics similar to the parental virus and are sensitive to ammonium chloride, which blocks virion-to-ISVP conversion. Together, these data suggest that σ1 conformational flexibility modulates the efficiency of reovirus host cell attachment.IMPORTANCE Nonenveloped virus entry is an incompletely understood process. For reovirus, the functional significance of conformational rearrangements in the attachment protein, σ1, that occur during entry and particle uncoating are unknown. We engineered and characterized reoviruses containing cysteine mutations that cross-link σ1 monomers in nonreducing conditions. We found that the introduction of a cysteine pair in the receptor-binding domain of σ1 yielded a virus that replicates with faster kinetics than the parental virus and forms larger plaques. Using functional assays, we found that cross-linking the σ1 receptor-binding domain modulates reovirus attachment but not uncoating or transcription. These data suggest that σ1 conformational rearrangements mediate the efficiency of reovirus host cell binding.


Assuntos
Reoviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Ligação Viral , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Células L , Camundongos , Mutação , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Reoviridae/genética , Proteínas Virais/genética , Vírion/metabolismo , Internalização do Vírus
9.
Nano Lett ; 20(5): 4038-4042, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320256

RESUMO

In recent decades, atomic force microscopy (AFM), in particular the force spectroscopy mode, has become a method of choice to study biomolecular interactions at the single-molecule level. However, grafting procedures as well as determining binding specificity remain challenging. We report here an innovative approach based on a photocleavable group that enables in situ release of the ligands bound to the AFM tip and thus allows direct assessment of the binding specificity. Applicable to a wide variety of molecules, the strategy presented here provides new opportunities to study specific interactions and deliver single molecules with high spatiotemporal resolution in a wide range of applications, including AFM-based cell biology.

10.
Chemphyschem ; 21(7): 659-666, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31867830

RESUMO

Hydrogen-bonded organic semiconductors are extraordinarily stable organic solids forming stable, large crystallites with the ability to preserve favorable electrical properties upon bioconjugation. Lately, tremendous efforts have been made to use these bioconjugated semiconductors as platforms for stable multifunctional bioelectronics devices, yet the detailed characterization of bio-active binding sites (orientation, density, etc.) at the nanoscale has not been achieved yet. The presented work investigates the bioconjugation of epindolidione and quinacridone, two representative semiconductors, with respect to their exposed amine-functionalities. Relying on the biotin-avidin lock-and-key system and applying the atomic force microscopy (AFM) derivative topography and recognition (TREC) imaging, we used activated biotin to flag crystal-faces with exposed amine functional groups. Contrary to previous studies, biotin bonds were found to be stable towards removal by autolysis. The resolution strength and clear recognition capability makes TREC-AFM a valuable tool in the investigation of bio-conjugated, hydrogen-bonded semiconductors.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Hidrogênio/química , Sítios de Ligação , Microscopia de Força Atômica , Estrutura Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
11.
Nano Lett ; 19(1): 612-617, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30560669

RESUMO

Reliable quantification of binding affinity is important in biotechnology and pharmacology and increasingly coupled with a demand for ultrasensitivity, nanoscale resolution, and minute sample amounts. Standard techniques are not able to meet these criteria. This study provides a new platform based on atomic force microscopy (AFM)-derived recognition imaging to determine affinity by visualizing single molecular bindings on nanosize dendrons. Using DNA hybridization as a demonstrator, an AFM sensor adorned with a cognate binding strand senses and localizes target DNAs at nanometer resolution. To overcome the limitations of speed and resolution, the AFM cantilever is sinusoidally oscillated close to resonance conditions at small amplitudes. The equilibrium dissociation constant of capturing DNA duplexes was obtained, yielding 2.4 × 10-10 M. Our label-free single-molecular biochemical analysis approach evidences the utility of recognition imaging and analysis in quantifying biomolecular interactions of just a few hundred molecules.


Assuntos
DNA/isolamento & purificação , Imagem Molecular , Nanotecnologia , DNA/ultraestrutura , Humanos , Microscopia de Força Atômica , Hibridização de Ácido Nucleico , Fenômenos Físicos
12.
Biochim Biophys Acta Biomembr ; 1860(3): 664-672, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29212043

RESUMO

Mitochondrial membrane uncoupling protein 3 (UCP3) is not only expressed in skeletal muscle and heart, but also in brown adipose tissue (BAT) alongside UCP1, which facilitates a proton leak to support non-shivering thermogenesis. In contrast to UCP1, the transport function and molecular mechanism of UCP3 regulation are poorly investigated, although it is generally agreed upon that UCP3, analogous to UCP1, transports protons, is activated by free fatty acids (FFAs) and is inhibited by purine nucleotides (PNs). Because the presence of two similar uncoupling proteins in BAT is surprising, we hypothesized that UCP1 and UCP3 are differently regulated, which may lead to differences in their functions. By combining atomic force microscopy and electrophysiological measurements of recombinant proteins reconstituted in planar bilayer membranes, we compared the level of protein activity with the bond lifetimes between UCPs and PNs. Our data revealed that, in contrast to UCP1, UCP3 can be fully inhibited by all PNs and IC50 increases with a decrease in PN-phosphorylation. Experiments with mutant proteins demonstrated that the conserved arginines in the PN-binding pocket are involved in the inhibition of UCP1 and UCP3 to different extents. Fatty acids compete with all PNs bound to UCP1, but only with ATP bound to UCP3. We identified phosphate as a novel inhibitor of UCP3 and UCP1, which acts independently of PNs. The differences in molecular mechanisms of the inhibition between the highly homologous transporters UCP1 and UCP3 indicate that UCP3 has adapted to fulfill a different role and possibly another transport function in BAT.


Assuntos
Nucleotídeos de Adenina/farmacologia , Fosfatos/farmacologia , Proteína Desacopladora 1/antagonistas & inibidores , Proteína Desacopladora 3/antagonistas & inibidores , Animais , Arginina/química , Ligação Competitiva , Ácidos Graxos/farmacologia , Bicamadas Lipídicas , Lipossomos , Camundongos , Microscopia de Força Atômica , Mutagênese Sítio-Dirigida , Prótons , Proteínas Recombinantes/efeitos dos fármacos , Proteína Desacopladora 1/genética , Proteína Desacopladora 3/genética
13.
J Agric Food Chem ; 72(26): 14521-14529, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906535

RESUMO

Chemosensory membrane proteins such as G-protein-coupled receptors (GPCRs) drive flavor perception of food formulations. To achieve this, a detailed understanding of the structure and function of these membrane proteins is needed, which is often limited by the extraction and purification methods involved. The proposed nanodisc methodology helps overcome some of these existing challenges such as protein stability and solubilization along with their reconstitution from a native cell-membrane environment. Being well-established in structural biology procedures, nanodiscs offer this elegant solution by using, e.g., a membrane scaffold protein (MSP) or styrene-maleic acid (SMA) polymer, which interacts directly with the cell membrane during protein reconstitution. Such derived proteins retain their biophysical properties without compromising the membrane architecture. Here, we seek to show that these lipidic systems can be explored for insights with a focus on chemosensory membrane protein morphology and structure, conformational dynamics of protein-ligand interactions, and binding kinetics to answer pending questions in flavor research. Additionally, the compatibility of nanodiscs across varied (labeled or label-free) techniques offers significant leverage, which has been highlighted here.


Assuntos
Proteínas de Membrana , Proteínas de Membrana/química , Nanoestruturas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Aromatizantes/química , Humanos
14.
Nat Food ; 5(4): 281-287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605131

RESUMO

Food texture, along with taste and odour, is an important factor in determining food flavour. However, the physiological properties of oral texture perception require greater examination and definition. Here we explore recent trends and perspectives related to mouthfeel and its relevance in food flavour perception, with an emphasis on the biophysical point of view and methods. We propose that atomic force microscopy, combined with other biophysical techniques and more traditional food science approaches, offers a unique opportunity to study the mechanisms of mouthfeel at cellular and molecular levels. With this knowledge, food composition could be modified to develop healthier products by limiting salt, sugar, fat and calories while maintaining sensory qualities and consumer acceptance.


Assuntos
Microscopia de Força Atômica , Boca , Percepção Gustatória , Humanos , Paladar/fisiologia , Percepção Gustatória/fisiologia
15.
ACS Nanosci Au ; 4(2): 136-145, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38644967

RESUMO

The SARS-CoV-2 pandemic spurred numerous research endeavors to comprehend the virus and mitigate its global severity. Understanding the binding interface between the virus and human receptors is pivotal to these efforts and paramount to curbing infection and transmission. Here we employ atomic force microscopy and steered molecular dynamics simulation to explore SARS-CoV-2 receptor binding domain (RBD) variants and angiotensin-converting enzyme 2 (ACE2), examining the impact of mutations at key residues upon binding affinity. Our results show that the Omicron and Delta variants possess strengthened binding affinity in comparison to the Mu variant. Further, using sera from individuals either vaccinated or with acquired immunity following Delta strain infection, we assess the impact of immunity upon variant RBD/ACE2 complex formation. Single-molecule force spectroscopy analysis suggests that vaccination before infection may provide stronger protection across variants. These results underscore the need to monitor antigenic changes in order to continue developing innovative and effective SARS-CoV-2 abrogation strategies.

16.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147336

RESUMO

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Assuntos
Orthoreovirus de Mamíferos , Receptores Imunológicos , Receptores Virais , Infecções por Reoviridae , Animais , Humanos , Camundongos , Anticorpos Antivirais , Orthoreovirus de Mamíferos/fisiologia , Receptores Imunológicos/metabolismo , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo
17.
Chem Commun (Camb) ; 58(33): 5072-5087, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35315846

RESUMO

Understanding biological interactions at a molecular level grants valuable information relevant to improving medical treatments and outcomes. Among the suite of technologies available, Atomic Force Microscopy (AFM) is unique in its ability to quantitatively probe forces and receptor-ligand interactions in real-time. The ability to assess the formation of supramolecular bonds and intermediates in real-time on surfaces and living cells generates important information relevant to understanding biological phenomena. Combining AFM with fluorescence-based techniques allows for an unprecedented level of insight not only concerning the formation and rupture of bonds, but understanding medically relevant interactions at a molecular level. As the ability of AFM to probe cells and more complex models improves, being able to assess binding kinetics, chemical topographies, and garner spectroscopic information will likely become key to developing further improvements in fields such as cancer, nanomaterials, and virology. The rapid response to the COVID-19 crisis, producing information regarding not just receptor affinities, but also strain-dependent efficacy of neutralizing nanobodies, demonstrates just how viable and integral to the pre-clinical development of information AFM techniques are in this era of medicine.


Assuntos
COVID-19 , Nanoestruturas , Humanos , Cinética , Ligantes , Microscopia de Força Atômica/métodos
18.
Nat Commun ; 13(1): 2564, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538121

RESUMO

The recent emergence of highly transmissible SARS-CoV-2 variants illustrates the urgent need to better understand the molecular details of the virus binding to its host cell and to develop anti-viral strategies. While many studies focused on the role of the angiotensin-converting enzyme 2 receptor in the infection, others suggest the important role of cell attachment factors such as glycans. Here, we use atomic force microscopy to study these early binding events with the focus on the role of sialic acids (SA). We show that SARS-CoV-2 binds specifically to 9-O-acetylated-SA with a moderate affinity, supporting its role as an attachment factor during virus landing to cell host surfaces. For therapeutic purposes and based on this finding, we have designed novel blocking molecules with various topologies and carrying a controlled number of SA residues, enhancing affinity through a multivalent effect. Inhibition assays show that the AcSA-derived glycoclusters are potent inhibitors of cell binding and infectivity, offering new perspectives in the treatment of SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Sítios de Ligação , Humanos , Ácido N-Acetilneuramínico , Ligação Proteica , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
ACS Nano ; 16(1): 306-316, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34957816

RESUMO

Silica nanoparticles (SiNP) trigger a range of innate immune responses in relevant essential organs, such as the liver and the lungs. Inflammatory reactions, including NLRP3 inflammasome activation, have been linked to particulate materials; however, the molecular mechanisms and key actors remain elusive. Although many receptors, including several scavenger receptors, were suggested to participate in SiNP cellular uptake, mechanistic evidence of their role on innate immunity is lacking. Here we present an atomic force microscopy-based approach to physico-mechanically map the specific interaction occurring between nanoparticles and scavenger receptor A1 (SRA1) in vitro on living lung epithelial cells. We find that SiNP recognition by SRA1 on human macrophages plays a key role in mediating NLRP3 inflammasome activation, and we identify cellular mechanical changes as clear indicators of inflammasome activation in human macrophages, greatly advancing our knowledge on the interplay among nanomaterials and innate immunity.


Assuntos
Inflamassomos , Nanopartículas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Macrófagos/metabolismo , Imunidade Inata , Dióxido de Silício/metabolismo
20.
Nat Commun ; 12(1): 6977, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848718

RESUMO

Despite an unprecedented global gain in knowledge since the emergence of SARS-CoV-2, almost all mechanistic knowledge related to the molecular and cellular details of viral replication, pathology and virulence has been generated using early prototypic isolates of SARS-CoV-2. Here, using atomic force microscopy and molecular dynamics, we investigated how these mutations quantitatively affected the kinetic, thermodynamic and structural properties of RBD-ACE2 complex formation. We observed for several variants of concern a significant increase in the RBD-ACE2 complex stability. While the N501Y and E484Q mutations are particularly important for the greater stability, the N501Y mutation is unlikely to significantly affect antibody neutralization. This work provides unprecedented atomistic detail on the binding of SARS-CoV-2 variants and provides insight into the impact of viral mutations on infection-induced immunity.


Assuntos
Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/farmacologia , COVID-19/terapia , COVID-19/virologia , Humanos , Cinética , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA