Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Commun Signal ; 12: 53, 2014 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-25304327

RESUMO

BACKGROUND: The TIR domain-containing proteins BtpA/Btp1/TcpB and BtpB are translocated into host cells by the facultative intracellular bacterial pathogen Brucella. Here, they interfere with Toll like receptor signalling to temper the host inflammatory response. BtpA has also been found to modulate microtubule dynamics. In both proteins we identified a WxxxE motif, previously shown to be an essential structural component in a family of bacterial type III secretion system effectors that modulate host actin dynamics by functioning as guanine nucleotide exchange factors of host GTPases. We analysed a role for the WxxxE motif in association of BtpA and BtpB with the cytoskeleton. RESULTS: Unlike BtpA, ectopically expressed BtpB did not show a tubular localisation, but was found ubiquitously in the cytoplasm and the nucleus, and often appeared in discrete punctae in HeLa cells. BtpB was able to protect microtubules from drug-induced destabilisation similar to BtpA. The WxxxE motif was important for the ability of BtpA and BtpB to protect microtubules against destabilising drugs. Surprisingly, ectopic expression of BtpA, although not BtpB, in HeLa cells induced the formation of filopodia. This process was invariably dependent of the WxxxE motif. Our recent resolution of the crystal structure of the BtpA TIR domain reveals that the motif positions a glycine residue that has previously been shown to be essential for interaction of BtpA with microtubules. CONCLUSIONS: Our results suggest a structural role for the WxxxE motif in the association of BtpA and BtpB with microtubules, as with the WxxxE GEF family proteins where the motif positions an adjacent catalytic loop important for interaction with specific Rho GTPases. In addition, the ability of ectopically expressed BtpA to induce filopodia in a WxxxE-dependent manner suggests a novel property for BtpA. A conserved WxxxE motif is found in most bacterial and several eukaryotic TIR domain proteins. Despite the similarity between ectopically expressed BtpA and WxxxE GEFs to modulate host actin dynamics, our results suggest that BtpA is not part of this WxxxE GEF family. The WxxxE motif may therefore be a more common structural motif than thus far described. BtpA may provide clues to cross-talk between the TLR and GTPase signalling pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella melitensis/metabolismo , Microtúbulos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Pseudópodes/metabolismo , Fatores de Virulência/genética , Proteínas rho de Ligação ao GTP/metabolismo
2.
ACS Cent Sci ; 10(2): 477-486, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435518

RESUMO

Fatty acids play important signaling roles in biology, albeit typically lacking potency or selectivity, due to their substantial conformational flexibility. While being recognized as having properties of potentially great value as therapeutics, it is often the case that the functionally relevant conformation of the natural fatty acid is not known, thereby complicating efforts to develop natural-product-inspired ligands that have similar functional properties along with enhanced potency and selectivity profiles. In other words, without structural information associated with a particular functional relationship and the hopelessly unbiased conformational preferences of the endogenous ligand, one is molecularly ill-informed regarding the precise ligand-receptor interactions that play a role in driving the biological activity of interest. To address this problem, a molecular strategy to query the relevance of distinct subpopulations of fatty acid conformers has been established through "conformational profiling", a process whereby a unique collection of chiral and conformationally constrained fatty acids is employed to deconvolute beneficial structural features that impart natural-product-inspired function. Using oleic acid as an example because it is known to engage a variety of receptors, including GPR40, GPR120, and TLX, a 24-membered collection of mimetics was designed and synthesized. It was then demonstrated that this collection contained members that have enhanced potency and selectivity profiles, with some being clearly biased for engagement of the GPCRs GPR40 and GPR120 while others were identified as potent and selective modulators of the nuclear receptor TLX. A chemical synthesis strategy that exploited the power of modern technology for stereoselective synthesis was critical to achieving success, establishing a common sequence of bond-forming reactions to access a disparate collection of chiral mimetics, whose conformational preferences are impacted by the nature of stereodefined moieties differentially positioned about the C18 skeleton of the parent fatty acid. Overall, this study establishes a foundation to fuel future programs aimed at developing natural-product-inspired fatty acid mimetics as valuable tools in chemical biology and potential therapeutic leads.

3.
Org Lett ; 24(20): 3686-3690, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35584298

RESUMO

Progress toward an asymmetric synthesis of euphanes is described. A C14-desmethyl euphane system possessing five differentially substituted and electronically distinct alkenes has been prepared. The route employed is based on sequential metallacycle-mediated annulative cross-coupling, double asymmetric Brønsted acid mediated intramolecular Friedel-Crafts alkylation, and an oxidative rearrangement to establish the requisite C10 quaternary center. These studies have also led to the discovery of a novel euphane-based modulator of the Liver X Receptor.


Assuntos
Ácidos , Alcenos , Alquilação , Oxirredução , Estereoisomerismo
4.
ACS Chem Biol ; 17(5): 1143-1154, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35417135

RESUMO

Hyperlipidemia and increased circulating cholesterol levels are associated with increased cardiovascular disease risk. The liver X receptors (LXRs) are regulators of de novo lipogenesis and cholesterol transport and have been validated as potential therapeutic targets for the treatment of atherosclerosis. However, efforts to develop LXR agonists to reduce cardiovascular diseases have failed due to poor clinical outcomes-associated increased hepatic lipogenesis and elevated low-density lipoprotein (LDL) cholesterol (C). Here, we report that LXR inverse agonists are effective in lowering plasma LDL cholesterol and triglycerides in several models of hyperlipidemia, including the Ldlr null mouse model of atherosclerosis. Mechanistic studies demonstrate that LXR directly regulates the expression of Soat2 enzyme in the intestine, which is directly responsible for the re-uptake or excretion of circulating lipids. Oral administration of a gut-specific LXR inverse agonist leads to reduction of Soat2 expression in the intestine and effectively lowers circulating LDL cholesterol and triglyceride levels without modulating LXR target genes in the periphery. In summary, our studies highlight the therapeutic potential of the gut-restricted molecules to treat hyperlipidemia and atherosclerosis through the intestinal LXR-Soat2 axis.


Assuntos
Aterosclerose , Receptores Nucleares Órfãos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Colesterol/metabolismo , LDL-Colesterol/uso terapêutico , Hipolipemiantes/uso terapêutico , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo
5.
Nat Commun ; 13(1): 7131, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414641

RESUMO

The nuclear receptor REV-ERB plays an important role in a range of physiological processes. REV-ERB behaves as a ligand-dependent transcriptional repressor and heme has been identified as a physiological agonist. Our current understanding of how ligands bind to and regulate transcriptional repression by REV-ERB is based on the structure of heme bound to REV-ERB. However, porphyrin (heme) analogues have been avoided as a source of synthetic agonists due to the wide range of heme binding proteins and potential pleotropic effects. How non-porphyrin synthetic agonists bind to and regulate REV-ERB has not yet been defined. Here, we characterize a high affinity synthetic REV-ERB agonist, STL1267, and describe its mechanism of binding to REV-ERB as well as the method by which it recruits transcriptional corepressor both of which are unique and distinct from that of heme-bound REV-ERB.


Assuntos
Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Porfirinas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Heme/metabolismo , Ligantes , Porfirinas/farmacologia
6.
ACS Pharmacol Transl Sci ; 4(5): 1543-1555, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661073

RESUMO

The hormone oxytocin is commonly administered during childbirth to initiate and strengthen uterine contractions and prevent postpartum hemorrhage. However, patients have wide variation in the oxytocin dose required for a clinical response. To begin to uncover the mechanisms underlying this variability, we screened the 11 most prevalent missense genetic variants in the oxytocin receptor (OXTR) gene. We found that five variants, V45L, P108A, L206V, V281M, and E339K, significantly altered oxytocin-induced Ca2+ signaling or ß-arrestin recruitment and proceeded to assess the effects of these variants on OXTR trafficking to the cell membrane, desensitization, and internalization. The variants P108A and L206V increased OXTR localization to the cell membrane, whereas V281M and E339K caused OXTR to be retained inside the cell. We examined how the variants altered the balance between OXTR activation and desensitization, which is critical for appropriate oxytocin dosing. The E339K variant impaired OXTR activation, internalization, and desensitization to roughly equal extents. In contrast, V281M decreased OXTR activation but had no effect on internalization and desensitization. V45L and P108A did not alter OXTR activation but did impair ß-arrestin recruitment, internalization, and desensitization. Molecular dynamics simulations predicted that V45L and P108A prevent extension of the first intracellular loop of OXTR, thus inhibiting ß-arrestin binding. Overall, our data suggest mechanisms by which OXTR genetic variants could alter clinical response to oxytocin.

7.
Cell Chem Biol ; 27(10): 1272-1284.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32763139

RESUMO

TLX is an orphan nuclear receptor that plays a critical role in both embryonic and adult neurogenesis, as well in the pathogenesis of glioblastomas. TLX functions predominately as a transcriptional repressor, but no natural ligands or high-affinity synthetic ligands have been identified. Here, we describe the identification of natural and synthetic retinoids as functional ligands for TLX. We identified potent synthetic retinoids that directly bind to TLX and either activate or inhibit its transcriptional repressor activity. Furthermore, we identified all-trans and 11-cis retinaldehyde (retinal), retinoids that play an essential role in the visual cycle, as the preferential natural retinoids that bind to and modulate the function of TLX. Molecular dynamics simulations followed by mutational analysis provided insight into the molecular basis of retinoid binding to TLX. Our data support the validity of TLX as a target for development of therapeutics to treat cognitive disorders and/or glioblastomas.


Assuntos
Produtos Biológicos/química , Receptores Citoplasmáticos e Nucleares/química , Retinoides/química , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Ligantes , Masculino , Simulação de Dinâmica Molecular , Estrutura Molecular , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/agonistas , Retinoides/síntese química , Retinoides/farmacologia , Adulto Jovem
8.
FEBS J ; 284(23): 4143-4157, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29055076

RESUMO

The more severe strains of the bacterial human pathogen Helicobacter pylori produce a type IV secretion system (cagT4SS) to inject the oncoprotein cytotoxin-associated gene A (CagA) into gastric cells. This syringe-like molecular apparatus is prolonged by an external pilus that exploits integrins as receptors to mediate the injection of CagA. The molecular determinants of the interaction of the cagT4SS pilus with the integrin ectodomain are still poorly understood. In this study, we have used surface plasmon resonance (SPR) to generate a comprehensive analysis of the protein-protein interactions between purified CagA, CagL, CagI, CagY repeat domain II (CagYRRII ), CagY C-terminal domain (CagYB10 ) and integrin α5ß1 ectodomain (α5ß1E ) or headpiece domain (α5ß1HP ). We found that CagI, CagA, CagL and CagYB10 but not CagYRRII were able to interact with α5ß1E with affinities similar to the one observed for α5ß1E interaction with its physiological ligand fibronectin. We further showed that integrin activation and its associated conformational change increased CagA, CagL and CagYB10 affinities for the receptor. Furthermore, CagI did not interact with integrin unless the receptor was in open conformation. CagI, CagA but not CagL and CagYB10 interacted with the α5ß1HP . Our SPR study also revealed novel interactions between CagA and CagL, CagA and CagYB10 , and CagA and CagI. Altogether, our data map the network of interactions between host-cell α5ß1 integrin and the cagT4SS proteins and suggest that activation of the receptor promotes interactions with the secretion apparatus and possibly CagA injection.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Integrina alfa5beta1/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sistemas de Secreção Tipo IV/metabolismo , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células CHO , Cricetinae , Cricetulus , Helicobacter pylori/genética , Humanos , Integrina alfa5beta1/química , Integrina alfa5beta1/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Ressonância de Plasmônio de Superfície , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Difração de Raios X
9.
FEBS Lett ; 587(21): 3412-6, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24076024

RESUMO

BtpA/Btp1/TcpB is a virulence factor produced by Brucella species that possesses a Toll interleukin-1 receptor (TIR) domain. Once delivered into the host cell, BtpA interacts with MyD88 to interfere with TLR signalling and modulates microtubule dynamics. Here the crystal structure of the BtpA TIR domain at 3.15 Å is presented. The structure shows a dimeric arrangement of a canonical TIR domain, similar to the Paracoccus denitrificans Tir protein but secured by a unique long N-terminal α-tail that packs against the TIR:TIR dimer. Structure-based mutations and multi-angle light scattering experiments characterized the BtpA dimer conformation in solution. The structure of BtpA will help with studies to understand the mechanisms involved in its interactions with MyD88 and with microtubules.


Assuntos
Proteínas de Bactérias/química , Brucella melitensis/imunologia , Brucella melitensis/metabolismo , Receptores de Interleucina-1/química , Proteínas de Bactérias/metabolismo , Humanos , Modelos Moleculares , Paracoccus denitrificans/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Interleucina-1/metabolismo , Relação Estrutura-Atividade , Fatores de Virulência/química , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA