Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neuroimage ; 159: 302-324, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28735011

RESUMO

Magnetoencephalography (MEG) is increasingly being used to study brain function because of its excellent temporal resolution and its direct association with brain activity at the neuronal level. One possible cause of error in the analysis of MEG data comes from the fact that participants, even MEG-experienced ones, move their head in the MEG system. Head movement can cause source localization errors during the analysis of MEG data, which can result in the appearance of source variability that does not reflect brain activity. The MEG community places great importance in eliminating this source of possible errors as is evident, for example, by recent efforts to develop head casts that limit head movement in the MEG system. In this work we use software tools to identify, assess and eliminate from the analysis of MEG data any possible correlations between head movement in the MEG system and widely-used measures of brain activity derived from MEG resting-state recordings. The measures of brain activity we study are a) the Hilbert-transform derived amplitude envelope of the beamformer time series and b) functional networks; both measures derived by MEG resting-state recordings. Ten-minute MEG resting-state recordings were performed on healthy participants, with head position continuously recorded. The sources of the measured magnetic signals were localized via beamformer spatial filtering. Temporal independent component analysis was subsequently used to derive resting-state networks. Significant correlations were observed between the beamformer envelope time series and head movement. The correlations were substantially reduced, and in some cases eliminated, after a participant-specific temporal high-pass filter was applied to those time series. Regressing the head movement metrics out of the beamformer envelope time series had an even stronger effect in reducing these correlations. Correlation trends were also observed between head movement and the activation time series of the default-mode and frontal networks. Regressing the head movement metrics out of the beamformer envelope time series completely eliminated these correlations. Additionally, applying the head movement correction resulted in changes in the network spatial maps for the visual and sensorimotor networks. Our results a) show that the results of MEG resting-state studies that use the above-mentioned analysis methods are confounded by head movement effects, b) suggest that regressing the head movement metrics out of the beamformer envelope time series is a necessary step to be added to these analyses, in order to eliminate the effect that head movement has on the amplitude envelope of beamformer time series and the network time series and c) highlight changes in the connectivity spatial maps when head movement correction is applied.


Assuntos
Artefatos , Encéfalo/fisiologia , Movimentos da Cabeça , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Masculino
2.
Epilepsy Behav ; 72: 122-126, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28575760

RESUMO

BACKGROUND: Benign epilepsy with centro-temporal spikes (BECTS) is a common childhood epilepsy syndrome also known as Rolandic Epilepsy (RE). Neurocognitive phenotypes have been described with greater focus on attention, reading and language domains but there have been far fewer studies focusing on motor functioning. This study included measures of motor, language and cognition in order to investigate the range, degree and pattern of difficulties associated with BECTS in a case series of children, but with a particular emphasis on motor skills. METHOD: Twenty-one children aged between 8 and 16years with a diagnosis of BECTS were asked to complete standardized assessments for language, cognition, motor functioning and handwriting. RESULTS: When measuring across language, cognitive and motor domains, 19 (90.48%) of the twenty-one children with a diagnosis of BECTS showed some difficulties on at least one area of functioning using standardized assessment tests. Of particular note nearly half (47.62%) of the children had some difficulties in one or more areas of motor functioning. DISCUSSION: Children with BECTS have a heterogeneous pattern of neurocognitive impairments. The presence of motor difficulties (DCD) should be considered in all children routinely seen in clinical settings with BECTS and included in any screening processes.


Assuntos
Epilepsia Rolândica/epidemiologia , Epilepsia Rolândica/fisiopatologia , Transtornos das Habilidades Motoras/epidemiologia , Transtornos das Habilidades Motoras/fisiopatologia , Testes Neuropsicológicos , Adolescente , Atenção/fisiologia , Criança , Cognição/fisiologia , Estudos de Coortes , Eletroencefalografia/tendências , Epilepsia Rolândica/psicologia , Feminino , Humanos , Masculino , Destreza Motora/fisiologia , Transtornos das Habilidades Motoras/psicologia
3.
Hum Brain Mapp ; 36(10): 3935-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26177579

RESUMO

Benign Epilepsy with Centro-Temporal Spikes (BECTS) is a common childhood epilepsy associated with deficits in several neurocognitive domains. Neurophysiological studies in BECTS often focus on centro-temporal spikes, but these correlate poorly with morphology and cognitive impairments. To better understand the neural profile of BECTS, we studied background brain oscillations, thought to be integrally involved in neural network communication, in sensorimotor areas. We used independent component analysis of temporally correlated sources on magnetoencephalography recordings to assess sensorimotor resting-state network activity in BECTS patients and typically developing controls. We also investigated the variability of oscillatory characteristics within focal primary motor cortex (M1), localized with a separate finger abduction task. We hypothesized that background oscillations would differ between patients and controls in the sensorimotor network but not elsewhere, especially in the beta band (13-30 Hz) because of its role in network communication and motor processing. The results support our hypothesis: in the sensorimotor network, patients had a greater variability in oscillatory amplitude compared to controls, whereas there was no difference in the visual network. Network measures did not correlate with age. The coefficient of variation of resting M1 peak frequency correlated negatively with age in the beta band only, and was greater than average for a number of patients. Our results point toward a "disorganized" functional sensorimotor network in BECTS, supporting a neurodevelopmental delay in sensorimotor cortex. Our findings further suggest that investigating the variability of oscillatory peak frequency may be a useful tool to investigate deficits of disorganization in neurodevelopmental disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Epilepsia Rolândica/fisiopatologia , Córtex Sensório-Motor/crescimento & desenvolvimento , Córtex Sensório-Motor/fisiopatologia , Adolescente , Envelhecimento/fisiologia , Ritmo beta , Criança , Eletroencefalografia , Feminino , Dedos/inervação , Lateralidade Funcional/fisiologia , Humanos , Testes de Inteligência , Magnetoencefalografia , Masculino , Córtex Motor/crescimento & desenvolvimento , Córtex Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Vias Visuais/fisiopatologia
4.
Neuroimage ; 79: 295-303, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23651840

RESUMO

Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Fixação Ocular/fisiologia , Rede Nervosa/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
5.
Neuroimage ; 54(4): 2983-93, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21112405

RESUMO

Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adulto , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Orientação/fisiologia , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Adulto Jovem
6.
Neuroimage Clin ; 29: 102524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33340975

RESUMO

Magnetoencephalography (MEG) measures magnetic fields generated by synchronised neural current flow and provides direct inference on brain electrophysiology and connectivity, with high spatial and temporal resolution. The movement-related beta decrease (MRBD) and the post-movement beta rebound (PMBR) are well-characterised effects in magnetoencephalography (MEG), with the latter having been shown to relate to long-range network integrity. Our previous work has shown that the PMBR is diminished (relative to controls) in a group of schizophrenia patients. However, little is known about how this effect might differ in patients at different stages of illness and degrees of clinical severity. Here, we extend our previous findings showing that the MEG derived PMBR abnormality in schizophrenia exists in 29 recent-onset and 35 established cases (i.e., chronic patients), compared to 42 control cases. In established cases, PMBR is negatively correlated with severity of disorganization symptoms. Further, using a hidden Markov model analysis, we show that transient pan-spectral oscillatory "bursts", which underlie the PMBR, differ between healthy controls and patients. Results corroborate that PMBR is associated with disorganization of mental activity in schizophrenia.


Assuntos
Ritmo beta , Esquizofrenia , Encéfalo , Humanos , Magnetoencefalografia , Movimento
7.
Elife ; 82019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038453

RESUMO

We studied resting-state oscillatory connectivity using magnetoencephalography in healthy young humans (N = 183) genotyped for APOE-ɛ4, the greatest genetic risk for Alzheimer's disease (AD). Connectivity across frequencies, but most prevalent in alpha/beta, was increased in APOE-ɛ4 in a set of mostly right-hemisphere connections, including lateral parietal and precuneus regions of the Default Mode Network. Similar regions also demonstrated hyperactivity, but only in gamma (40-160 Hz). In a separate study of AD patients, hypoconnectivity was seen in an extended bilateral network that partially overlapped with the hyperconnected regions seen in young APOE-ɛ4 carriers. Using machine-learning, AD patients could be distinguished from elderly controls with reasonable sensitivity and specificity, while young APOE-e4 carriers could also be distinguished from their controls with above chance performance. These results support theories of initial hyperconnectivity driving eventual profound disconnection in AD and suggest that this is present decades before the onset of AD symptomology.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Predisposição Genética para Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Genótipo , Heterozigoto , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Masculino , Lobo Parietal , Sensibilidade e Especificidade , Adulto Jovem
8.
Clin Neurophysiol ; 128(11): 2347-2357, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28571910

RESUMO

OBJECTIVE: Neuroimaging studies in Alzheimer's disease (AD) yield conflicting results due to selective investigation. We conducted a comprehensive magnetoencephalography study of connectivity changes in AD and healthy ageing in the resting-state. METHODS: We performed a whole-brain, source-space assessment of oscillatory neural signalling in multiple frequencies comparing AD patients, elderly and young controls. We compared eyes-open and closed group oscillatory envelope activity in networks obtained through temporal independent component analysis, and calculated whole-brain node-based amplitude and phase connectivity. RESULTS: In bilateral parietotemporal areas, oscillatory envelope amplitude increased with healthy ageing, whereas both local amplitude and node-to-global connectivity decreased with AD. AD-related decreases were spatially specific and restricted to the alpha and beta bands. A significant proportion of the variance in areas of peak group difference was explained by cognitive integrity, in addition to group. None of the groups differed in phase connectivity. Results were highly similar for eyes-open and closed resting-state. CONCLUSIONS: These results support the disconnection syndrome hypothesis and suggest that AD shows distinct and unique patterns of disrupted neural functioning, rather than accelerated healthy ageing. SIGNIFICANCE: Whole-brain assessments show that disrupted regional oscillatory envelope amplitude and connectivity in the alpha and beta bands play a key role in AD.


Assuntos
Ritmo alfa/fisiologia , Doença de Alzheimer/fisiopatologia , Ritmo beta/fisiologia , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Magnetoencefalografia , Masculino , Rede Nervosa/diagnóstico por imagem
9.
J Neurosci Methods ; 260: 283-91, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26642968

RESUMO

BACKGROUND: Non-invasive in vivo neurophysiological recordings with EEG/MEG are key to the diagnosis, classification, and further understanding of epilepsy. Historically the emphasis of these recordings has been the localisation of the putative sources of epileptic discharges. More recent developments see new techniques studying oscillatory dynamics, connectivity and network properties. NEW METHOD: New analysis strategies for whole head MEG include the development of spatial filters or beamformers for source localisation, time-frequency analysis for cortical dynamics and graph theory applications for connectivity. RESULTS: The idea of epilepsy as a network disorder is not new, and new applications of structural and functional brain imaging show differences in cortical and subcortical networks in patients with epilepsy compared to controls. Concepts of 'focal' and 'generalised' are challenged by evidence of focal onsets in generalised epileptic discharges, and widespread network changes in focal epilepsy. Spectral analyses can show differences in induced cortical response profiles, particularly in photosensitive epilepsy. COMPARISON WITH EXISTING METHOD: This review focuses on the application of MEG in the study of epilepsy, starting with a brief historical perspective, followed by novel applications of source localisation, time-frequency and connectivity analyses. CONCLUSION: Novel MEG analyses approaches show altered cortical dynamics and widespread network alterations in focal and generalised epilepsies, and identification of regional network abnormalities may have a role in epilepsy surgery evaluation.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiopatologia , Algoritmos , Animais , Conectoma/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Clin Neurophysiol ; 127(2): 1147-1156, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26522940

RESUMO

OBJECTIVE: Magnetoencephalography (MEG) and a simple motor paradigm were used to study induced sensorimotor responses and their relationship to motor skills in children diagnosed with Benign Epilepsy with Centro-Temporal Spikes (BECTS). METHODS: Twenty-one children with BECTS and 15 age-matched controls completed a finger abduction task in MEG; movement-related oscillatory responses were derived and contrasted between groups. A subset of children also completed psycho-behavioural assessments. Regression analyses explored the relationship of MEG responses to manual dexterity performance, and dependence upon clinical characteristics. RESULTS: In children with BECTS, manual dexterity was below the population mean (p=.002) and three showed severe impairment. Our main significant finding was of reduced ipsilateral movement related beta desynchrony (MRBDi) in BECTS relative to the control group (p=.03) and predicted by epileptic seizure recency (p=.02), but not age, medication status, or duration of epilepsy. Laterality scores across the entire cohort indicated that less lateralised MRBD predicted better manual dexterity (p=.04). CONCLUSIONS: Altered movement-related oscillatory responses in ipsilateral motor cortex were associated with motor skill deficits in children with BECTS. These changes were more marked in those with more recent seizures. SIGNIFICANCE: These findings may reflect differences in inter-hemispheric interactions during motor control in BECTS.


Assuntos
Ondas Encefálicas/fisiologia , Sincronização Cortical/fisiologia , Epilepsia Rolândica/diagnóstico , Epilepsia Rolândica/fisiopatologia , Magnetoencefalografia/métodos , Córtex Motor/fisiopatologia , Potenciais de Ação/fisiologia , Adolescente , Criança , Estudos de Coortes , Feminino , Humanos , Masculino
11.
PLoS One ; 10(4): e0124798, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25906070

RESUMO

Individual differences in the visual gamma (30-100 Hz) response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition) have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency) are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient) varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10-25 Hz), but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes.


Assuntos
Magnetoencefalografia , Estimulação Luminosa , Adulto , Potenciais Evocados Visuais/fisiologia , Humanos , Processamento de Sinais Assistido por Computador , Córtex Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA