Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 541(7637): 402-406, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28024300

RESUMO

Embryonic development is driven by tightly regulated patterns of gene expression, despite extensive genetic variation among individuals. Studies of expression quantitative trait loci (eQTL) indicate that genetic variation frequently alters gene expression in cell-culture models and differentiated tissues. However, the extent and types of genetic variation impacting embryonic gene expression, and their interactions with developmental programs, remain largely unknown. Here we assessed the effect of genetic variation on transcriptional (expression levels) and post-transcriptional (3' RNA processing) regulation across multiple stages of metazoan development, using 80 inbred Drosophila wild isolates, identifying thousands of developmental-stage-specific and shared QTL. Given the small blocks of linkage disequilibrium in Drosophila, we obtain near base-pair resolution, resolving causal mutations in developmental enhancers, validated transcription-factor-binding sites and RNA motifs. This fine-grain mapping uncovered extensive allelic interactions within enhancers that have opposite effects, thereby buffering their impact on enhancer activity. QTL affecting 3' RNA processing identify new functional motifs leading to transcript isoform diversity and changes in the lengths of 3' untranslated regions. These results highlight how developmental stage influences the effects of genetic variation and uncover multiple mechanisms that regulate and buffer expression variation during embryogenesis.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Regiões 3' não Traduzidas/genética , Alelos , Animais , Sítios de Ligação , Elementos Facilitadores Genéticos , Desequilíbrio de Ligação , Mutação , Locos de Características Quantitativas , Processamento de Terminações 3' de RNA , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
J Med Genet ; 59(8): 776-780, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34353863

RESUMO

INTRODUCTION: Replication of the nuclear genome is an essential step for cell division. Pathogenic variants in genes coding for highly conserved components of the DNA replication machinery cause Meier-Gorlin syndrome (MGORS). OBJECTIVE: Identification of novel genes associated with MGORS. METHODS: Exome sequencing was performed to investigate the genotype of an individual presenting with prenatal and postnatal growth restriction, a craniofacial gestalt of MGORS and coronal craniosynostosis. The analysis of the candidate variants employed bioinformatic tools, in silico structural protein analysis and modelling in budding yeast. RESULTS: A novel homozygous missense variant NM_016095.2:c.341G>T, p.(Arg114Leu), in GINS2 was identified. Both non-consanguineous healthy parents carried this variant. Bioinformatic analysis supports its classification as pathogenic. Functional analyses using yeast showed that this variant increases sensitivity to nicotinamide, a compound that interferes with DNA replication processes. The phylogenetically highly conserved residue p.Arg114 localises at the docking site of CDC45 and MCM5 at GINS2. Moreover, the missense change possibly disrupts the effective interaction between the GINS complex and CDC45, which is necessary for the CMG helicase complex (Cdc45/MCM2-7/GINS) to accurately operate. Interestingly, our patient's phenotype is strikingly similar to the phenotype of patients with CDC45-related MGORS, particularly those with craniosynostosis, mild short stature and patellar hypoplasia. CONCLUSION: GINS2 is a new disease-associated gene, expanding the genetic aetiology of MGORS.


Assuntos
Proteínas Cromossômicas não Histona , Microtia Congênita , Craniossinostoses , Micrognatismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Microtia Congênita/genética , Craniossinostoses/genética , Transtornos do Crescimento/genética , Humanos , Micrognatismo/genética , Patela/anormalidades , Saccharomyces cerevisiae/genética
3.
Hum Mol Genet ; 28(15): 2501-2513, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067316

RESUMO

Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.


Assuntos
Montagem e Desmontagem da Cromatina , Suturas Cranianas/crescimento & desenvolvimento , Craniossinostoses/metabolismo , Mutação de Sentido Incorreto , Nucleossomos/metabolismo , Osteogênese , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Animais , Suturas Cranianas/metabolismo , Craniossinostoses/genética , Craniossinostoses/fisiopatologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Humanos , Lactente , Masculino , Camundongos , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia , População Branca , Sequenciamento Completo do Genoma
4.
Genome Res ; 28(12): 1779-1790, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30355600

RESUMO

Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed "selfish spermatogonial selection," explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia and Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (FGFR2, FGFR3, RET, PTPN11, HRAS, and KRAS). We present a discovery screen to identify novel mutations and genes showing evidence of positive selection in the male germline, by performing massively parallel simplex PCR using RainDance technology to interrogate mutational hotspots in 67 genes (51.5 kb in total) in 276 biopsies of testes from five men (median age, 83 yr). Following ultradeep sequencing (about 16,000×), development of a low-frequency variant prioritization strategy, and targeted validation, we identified 61 distinct variants present at frequencies as low as 0.06%, including 54 variants not previously directly associated with selfish selection. The majority (80%) of variants identified have previously been implicated in developmental disorders and/or oncogenesis and include mutations in six newly associated genes (BRAF, CBL, MAP2K1, MAP2K2, RAF1, and SOS1), all of which encode components of the RAS-MAPK pathway and activate signaling. Our findings extend the link between mutations dysregulating the RAS-MAPK pathway and selfish selection, and show that the aging male germline is a repository for such deleterious mutations.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Transdução de Sinais , Testículo/metabolismo , Proteínas ras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade
5.
Bioinformatics ; 35(24): 5349-5350, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350555

RESUMO

SUMMARY: amplimap is a command-line tool to automate the processing and analysis of data from targeted next-generation sequencing experiments with PCR-based amplicons or capture-based enrichment systems. From raw sequencing reads, amplimap generates output such as read alignments, annotated variant calls, target coverage statistics and variant allele counts and frequencies for each target base pair. In addition to its focus on user-friendliness and reproducibility, amplimap supports advanced features such as consensus base calling for read families based on unique molecular identifiers and filtering false positive variant calls caused by amplification of off-target loci. AVAILABILITY AND IMPLEMENTATION: amplimap is available as a free Python package under the open-source Apache 2.0 License. Documentation, source code and installation instructions are available at https://github.com/koelling/amplimap.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Alelos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
7.
Genet Med ; 22(9): 1498-1506, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32499606

RESUMO

PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.


Assuntos
Craniossinostoses , Craniossinostoses/genética , Genótipo , Humanos , Mutação de Sentido Incorreto/genética , Penetrância , Fenótipo , Proteína Smad6/genética
8.
Hum Reprod ; 34(8): 1404-1415, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348830

RESUMO

STUDY QUESTION: What effect does cancer treatment have on levels of spontaneous selfish fibroblast growth factor receptor 2 (FGFR2) point mutations in human sperm? SUMMARY ANSWER: Chemotherapy and radiotherapy do not increase levels of spontaneous FGFR2 mutations in sperm but, unexpectedly, highly-sterilizing treatments dramatically reduce the levels of the disease-associated c.755C > G (Apert syndrome) mutation in sperm. WHAT IS KNOWN ALREADY: Cancer treatments lead to short-term increases in gross DNA damage (chromosomal abnormalities and DNA fragmentation) but the long-term effects, particularly at the single nucleotide resolution level, are poorly understood. We have exploited an ultra-sensitive assay to directly quantify point mutation levels at the FGFR2 locus. STUDY DESIGN, SIZE, DURATION: 'Selfish' mutations are disease-associated mutations that occur spontaneously in the sperm of most men and their levels typically increase with age. Levels of mutations at c.752-755 of FGFR2 (including c.755C > G and c.755C > T associated with Apert and Crouzon syndromes, respectively) in semen post-cancer treatment from 18 men were compared to levels in pre-treatment samples from the same individuals (n = 4) or levels in previously screened population controls (n = 99). PARTICIPANTS/MATERIALS, SETTING, METHODS: Cancer patients were stratified into four different groups based on the treatments they received and the length of time for spermatogenesis recovery. DNA extracted from semen samples was analysed using a previously established highly sensitive assay to identify mutations at positions c.752-755 of FGFR2. Five to ten micrograms of semen genomic DNA was spiked with internal controls for quantification purposes, digested with MboI restriction enzyme and gel extracted. Following PCR amplification, further MboI digestion and a nested PCR with barcoding primers, samples were sequenced on Illumina MiSeq. Mutation levels were determined relative to the spiked internal control; in individuals heterozygous for a nearby common single nucleotide polymorphism (SNP), mutations were phased to their respective alleles. MAIN RESULTS AND THE ROLE OF CHANCE: Patients treated with moderately-sterilizing alkylating regimens and who recovered spermatogenesis within <3 years after therapy (Group 3, n = 4) or non - alkylating chemotherapy and/or low gonadal radiation doses (Group 1, n = 4) had mutation levels similar to untreated controls. However, patients who had highly-sterilizing alkylating treatments (i.e. >5 years to spermatogenesis recovery) (Group 2, n = 7) or pelvic radiotherapy (Group 4, n = 3) exhibited c.755C > G mutation levels at or below background. Two patients (A and B) treated with highly-sterilizing alkylating agents demonstrated a clear reduction from pre-treatment levels; however pre-treatment samples were not available for the other patients with low mutation levels. Therefore, although based on their age we would expect detectable levels of mutations, we cannot exclude the possibility that these patients also had low mutation levels pre-treatment. In three patients with low c.755C > G levels at the first timepoint post-treatment, we observed increasing mutation levels over time. For two such patients we could phase the mutation to a nearby polymorphism (SNP) and determine that the mutation counts likely originated from a single or a small number of mutational events. LIMITATIONS, REASONS FOR CAUTION: This study was limited to 18 patients with different treatment regimens; for nine of the 18 patients, samples from only one timepoint were available. Only 12 different de novo substitutions at the FGFR2 c.752-755 locus were assessed, two of which are known to be disease associated. WIDER IMPLICATIONS OF THE FINDINGS: Our data add to the body of evidence from epidemiological studies and experimental data in humans suggesting that male germline stem cells are resilient to the accumulation of spontaneous mutations. Collectively, these data should provide physicians and health-care professionals with reassuring experimental-based evidence for counselling of male cancer patients contemplating their reproductive options several years after treatment. STUDY FUNDING/COMPETING INTEREST(S): This work was primarily supported by grants from the Wellcome (grant 091182 to AG and AOMW; grant 102 731 to AOMW), the University of Oxford Medical Sciences Division Internal Fund (grant 0005128 to GJM and AG), the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme (to AG) and the US National Institutes of Health (to MLM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. None of the authors has any conflicts of interest to declare. TRIAL REGISTRATION NUMBER: NA.


Assuntos
Antineoplásicos/administração & dosagem , Sobreviventes de Câncer , Neoplasias/terapia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Espermatozoides/efeitos da radiação , Adulto , Antineoplásicos/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Humanos , Masculino , Mutação/efeitos dos fármacos , Mutação/efeitos da radiação , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioterapia , Análise do Sêmen , Contagem de Espermatozoides , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
9.
Hum Mutat ; 39(10): 1360-1365, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30040876

RESUMO

Saethre-Chotzen syndrome (SCS), one of the most common forms of syndromic craniosynostosis (premature fusion of the cranial sutures), results from haploinsufficiency of TWIST1, caused by deletions of the entire gene or loss-of-function variants within the coding region. To determine whether non-coding variants also contribute to SCS, we screened 14 genetically undiagnosed SCS patients using targeted capture sequencing, and identified novel single nucleotide variants (SNVs) in the 5' untranslated region (UTR) of TWIST1 in two unrelated SCS cases. We show experimentally that these variants, which create translation start sites in the TWIST1 leader sequence, reduce translation from the main open reading frame (mORF). This is the first demonstration that non-coding SNVs of TWIST1 can cause SCS, and highlights the importance of screening the 5' UTR in clinically diagnosed SCS patients without a coding mutation. Similar 5' UTR variants, particularly of haploinsufficient genes, may represent an under-ascertained cause of monogenic disease.


Assuntos
Regiões 5' não Traduzidas , Acrocefalossindactilia/genética , Variação Genética , Proteínas Nucleares/genética , Biossíntese de Proteínas , Proteína 1 Relacionada a Twist/genética , Acrocefalossindactilia/diagnóstico , Alelos , Sequência de Bases , Análise Mutacional de DNA , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética , Genótipo , Haploinsuficiência , Humanos , Masculino , Mutação , Motivos de Nucleotídeos , Linhagem , Fenótipo
10.
Hum Mutat ; 38(10): 1360-1364, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28639312

RESUMO

We report the case of a male patient with Larsen syndrome found to be mosaic for a novel point mutation in FLNB in whom it was possible to provide evidence-based personalized counseling on transmission risk to future offspring. Using dideoxy sequencing, a low-level FLNB c.698A>G, encoding p.(Tyr233Cys) mutation was detected in buccal mucosa and fibroblast DNA. Mutation quantification was performed by deep next-generation sequencing (NGS) of DNA extracted from three somatic tissues (blood, fibroblasts, saliva) and a sperm sample. The mutation was detectable in all tissues tested, at levels ranging from 7% to 10% (mutation present in ∼20% of diploid somatic cells and 7% of haploid sperm), demonstrating the involvement of both somatic and gonadal lineages in this patient. This report illustrates the clinical utility of performing targeted NGS analysis on sperm from males with a mosaic condition in order to provide personalized transmission risk and offer evidence-based counseling on reproductive safety.


Assuntos
Filaminas/genética , Aconselhamento Genético , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mosaicismo , Osteocondrodisplasias/patologia , Fenótipo , Mutação Puntual/genética , Medicina de Precisão , Espermatozoides/patologia
12.
Nat Commun ; 14(1): 853, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792598

RESUMO

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Assuntos
Pai , Parto , Masculino , Gravidez , Feminino , Humanos , Criança , Mutação , Medição de Risco , Células Germinativas , Mosaicismo , Linhagem , Mutação em Linhagem Germinativa
13.
Nat Commun ; 12(1): 4797, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376651

RESUMO

Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.


Assuntos
Suturas Cranianas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Osteogênese/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Acrocefalossindactilia/embriologia , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Suturas Cranianas/citologia , Suturas Cranianas/embriologia , Dura-Máter/citologia , Dura-Máter/embriologia , Dura-Máter/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA-Seq/métodos , Crânio/citologia , Crânio/embriologia , Crânio/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA